Metamath Proof Explorer


Theorem eqriv

Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypothesis eqriv.1
|- ( x e. A <-> x e. B )
Assertion eqriv
|- A = B

Proof

Step Hyp Ref Expression
1 eqriv.1
 |-  ( x e. A <-> x e. B )
2 dfcleq
 |-  ( A = B <-> A. x ( x e. A <-> x e. B ) )
3 2 1 mpgbir
 |-  A = B