Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 21-Jun-1993)
Ref | Expression | ||
---|---|---|---|
Hypothesis | eqriv.1 | |- ( x e. A <-> x e. B ) |
|
Assertion | eqriv | |- A = B |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqriv.1 | |- ( x e. A <-> x e. B ) |
|
2 | dfcleq | |- ( A = B <-> A. x ( x e. A <-> x e. B ) ) |
|
3 | 2 1 | mpgbir | |- A = B |