| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|- ( ( # ` W ) = 1 -> ( # ` W ) = 1 ) |
| 2 |
|
s1len |
|- ( # ` <" ( W ` 0 ) "> ) = 1 |
| 3 |
1 2
|
eqtr4di |
|- ( ( # ` W ) = 1 -> ( # ` W ) = ( # ` <" ( W ` 0 ) "> ) ) |
| 4 |
|
fvex |
|- ( W ` 0 ) e. _V |
| 5 |
|
s1fv |
|- ( ( W ` 0 ) e. _V -> ( <" ( W ` 0 ) "> ` 0 ) = ( W ` 0 ) ) |
| 6 |
4 5
|
ax-mp |
|- ( <" ( W ` 0 ) "> ` 0 ) = ( W ` 0 ) |
| 7 |
6
|
eqcomi |
|- ( W ` 0 ) = ( <" ( W ` 0 ) "> ` 0 ) |
| 8 |
|
c0ex |
|- 0 e. _V |
| 9 |
|
fveq2 |
|- ( x = 0 -> ( W ` x ) = ( W ` 0 ) ) |
| 10 |
|
fveq2 |
|- ( x = 0 -> ( <" ( W ` 0 ) "> ` x ) = ( <" ( W ` 0 ) "> ` 0 ) ) |
| 11 |
9 10
|
eqeq12d |
|- ( x = 0 -> ( ( W ` x ) = ( <" ( W ` 0 ) "> ` x ) <-> ( W ` 0 ) = ( <" ( W ` 0 ) "> ` 0 ) ) ) |
| 12 |
8 11
|
ralsn |
|- ( A. x e. { 0 } ( W ` x ) = ( <" ( W ` 0 ) "> ` x ) <-> ( W ` 0 ) = ( <" ( W ` 0 ) "> ` 0 ) ) |
| 13 |
7 12
|
mpbir |
|- A. x e. { 0 } ( W ` x ) = ( <" ( W ` 0 ) "> ` x ) |
| 14 |
|
oveq2 |
|- ( ( # ` W ) = 1 -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ 1 ) ) |
| 15 |
|
fzo01 |
|- ( 0 ..^ 1 ) = { 0 } |
| 16 |
14 15
|
eqtrdi |
|- ( ( # ` W ) = 1 -> ( 0 ..^ ( # ` W ) ) = { 0 } ) |
| 17 |
16
|
raleqdv |
|- ( ( # ` W ) = 1 -> ( A. x e. ( 0 ..^ ( # ` W ) ) ( W ` x ) = ( <" ( W ` 0 ) "> ` x ) <-> A. x e. { 0 } ( W ` x ) = ( <" ( W ` 0 ) "> ` x ) ) ) |
| 18 |
13 17
|
mpbiri |
|- ( ( # ` W ) = 1 -> A. x e. ( 0 ..^ ( # ` W ) ) ( W ` x ) = ( <" ( W ` 0 ) "> ` x ) ) |
| 19 |
3 18
|
jca |
|- ( ( # ` W ) = 1 -> ( ( # ` W ) = ( # ` <" ( W ` 0 ) "> ) /\ A. x e. ( 0 ..^ ( # ` W ) ) ( W ` x ) = ( <" ( W ` 0 ) "> ` x ) ) ) |
| 20 |
|
s1cli |
|- <" ( W ` 0 ) "> e. Word _V |
| 21 |
|
eqwrd |
|- ( ( W e. Word A /\ <" ( W ` 0 ) "> e. Word _V ) -> ( W = <" ( W ` 0 ) "> <-> ( ( # ` W ) = ( # ` <" ( W ` 0 ) "> ) /\ A. x e. ( 0 ..^ ( # ` W ) ) ( W ` x ) = ( <" ( W ` 0 ) "> ` x ) ) ) ) |
| 22 |
20 21
|
mpan2 |
|- ( W e. Word A -> ( W = <" ( W ` 0 ) "> <-> ( ( # ` W ) = ( # ` <" ( W ` 0 ) "> ) /\ A. x e. ( 0 ..^ ( # ` W ) ) ( W ` x ) = ( <" ( W ` 0 ) "> ` x ) ) ) ) |
| 23 |
19 22
|
imbitrrid |
|- ( W e. Word A -> ( ( # ` W ) = 1 -> W = <" ( W ` 0 ) "> ) ) |
| 24 |
23
|
imp |
|- ( ( W e. Word A /\ ( # ` W ) = 1 ) -> W = <" ( W ` 0 ) "> ) |