Metamath Proof Explorer


Theorem eqsbc1

Description: Substitution for the left-hand side in an equality. Class version of eqsb1 . (Contributed by Andrew Salmon, 29-Jun-2011) Avoid ax-13 . (Revised by Wolf Lammen, 29-Apr-2023)

Ref Expression
Assertion eqsbc1
|- ( A e. V -> ( [. A / x ]. x = B <-> A = B ) )

Proof

Step Hyp Ref Expression
1 dfsbcq
 |-  ( y = A -> ( [. y / x ]. x = B <-> [. A / x ]. x = B ) )
2 eqeq1
 |-  ( y = A -> ( y = B <-> A = B ) )
3 sbsbc
 |-  ( [ y / x ] x = B <-> [. y / x ]. x = B )
4 eqsb1
 |-  ( [ y / x ] x = B <-> y = B )
5 3 4 bitr3i
 |-  ( [. y / x ]. x = B <-> y = B )
6 1 2 5 vtoclbg
 |-  ( A e. V -> ( [. A / x ]. x = B <-> A = B ) )