Description: Substitution for the right-hand side in an equality. (Contributed by Alan Sare, 24-Oct-2011) (Proof shortened by JJ, 7-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | eqsbc2 | |- ( A e. V -> ( [. A / x ]. B = x <-> B = A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsbc1 | |- ( A e. V -> ( [. A / x ]. x = B <-> A = B ) ) |
|
2 | eqcom | |- ( B = x <-> x = B ) |
|
3 | 2 | sbcbii | |- ( [. A / x ]. B = x <-> [. A / x ]. x = B ) |
4 | eqcom | |- ( B = A <-> A = B ) |
|
5 | 1 3 4 | 3bitr4g | |- ( A e. V -> ( [. A / x ]. B = x <-> B = A ) ) |