Description: Deduce that a set is a singleton. (Contributed by Thierry Arnoux, 10-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqsnd.1 | |- ( ( ph /\ x e. A ) -> x = B ) |
|
eqsnd.2 | |- ( ph -> B e. A ) |
||
Assertion | eqsnd | |- ( ph -> A = { B } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsnd.1 | |- ( ( ph /\ x e. A ) -> x = B ) |
|
2 | eqsnd.2 | |- ( ph -> B e. A ) |
|
3 | simpr | |- ( ( ph /\ x = B ) -> x = B ) |
|
4 | 2 | adantr | |- ( ( ph /\ x = B ) -> B e. A ) |
5 | 3 4 | eqeltrd | |- ( ( ph /\ x = B ) -> x e. A ) |
6 | 1 5 | impbida | |- ( ph -> ( x e. A <-> x = B ) ) |
7 | velsn | |- ( x e. { B } <-> x = B ) |
|
8 | 6 7 | bitr4di | |- ( ph -> ( x e. A <-> x e. { B } ) ) |
9 | 8 | eqrdv | |- ( ph -> A = { B } ) |