Metamath Proof Explorer


Theorem eqsnd

Description: Deduce that a set is a singleton. (Contributed by Thierry Arnoux, 10-May-2023)

Ref Expression
Hypotheses eqsnd.1
|- ( ( ph /\ x e. A ) -> x = B )
eqsnd.2
|- ( ph -> B e. A )
Assertion eqsnd
|- ( ph -> A = { B } )

Proof

Step Hyp Ref Expression
1 eqsnd.1
 |-  ( ( ph /\ x e. A ) -> x = B )
2 eqsnd.2
 |-  ( ph -> B e. A )
3 simpr
 |-  ( ( ph /\ x = B ) -> x = B )
4 2 adantr
 |-  ( ( ph /\ x = B ) -> B e. A )
5 3 4 eqeltrd
 |-  ( ( ph /\ x = B ) -> x e. A )
6 1 5 impbida
 |-  ( ph -> ( x e. A <-> x = B ) )
7 velsn
 |-  ( x e. { B } <-> x = B )
8 6 7 bitr4di
 |-  ( ph -> ( x e. A <-> x e. { B } ) )
9 8 eqrdv
 |-  ( ph -> A = { B } )