Metamath Proof Explorer


Theorem eqsnd

Description: Deduce that a set is a singleton. (Contributed by Thierry Arnoux, 10-May-2023) (Proof shortened by SN, 3-Jul-2025)

Ref Expression
Hypotheses eqsnd.1
|- ( ( ph /\ x e. A ) -> x = B )
eqsnd.2
|- ( ph -> B e. A )
Assertion eqsnd
|- ( ph -> A = { B } )

Proof

Step Hyp Ref Expression
1 eqsnd.1
 |-  ( ( ph /\ x e. A ) -> x = B )
2 eqsnd.2
 |-  ( ph -> B e. A )
3 1 ralrimiva
 |-  ( ph -> A. x e. A x = B )
4 2 ne0d
 |-  ( ph -> A =/= (/) )
5 eqsn
 |-  ( A =/= (/) -> ( A = { B } <-> A. x e. A x = B ) )
6 4 5 syl
 |-  ( ph -> ( A = { B } <-> A. x e. A x = B ) )
7 3 6 mpbird
 |-  ( ph -> A = { B } )