Description: Obsolete version of eqsnd as of 3-Jul-2025. (Contributed by Thierry Arnoux, 10-May-2023) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqsnd.1 | |- ( ( ph /\ x e. A ) -> x = B ) |
|
| eqsnd.2 | |- ( ph -> B e. A ) |
||
| Assertion | eqsndOLD | |- ( ph -> A = { B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsnd.1 | |- ( ( ph /\ x e. A ) -> x = B ) |
|
| 2 | eqsnd.2 | |- ( ph -> B e. A ) |
|
| 3 | simpr | |- ( ( ph /\ x = B ) -> x = B ) |
|
| 4 | 2 | adantr | |- ( ( ph /\ x = B ) -> B e. A ) |
| 5 | 3 4 | eqeltrd | |- ( ( ph /\ x = B ) -> x e. A ) |
| 6 | 1 5 | impbida | |- ( ph -> ( x e. A <-> x = B ) ) |
| 7 | velsn | |- ( x e. { B } <-> x = B ) |
|
| 8 | 6 7 | bitr4di | |- ( ph -> ( x e. A <-> x e. { B } ) ) |
| 9 | 8 | eqrdv | |- ( ph -> A = { B } ) |