Step |
Hyp |
Ref |
Expression |
1 |
|
sqrtth |
|- ( B e. CC -> ( ( sqrt ` B ) ^ 2 ) = B ) |
2 |
1
|
adantl |
|- ( ( A e. CC /\ B e. CC ) -> ( ( sqrt ` B ) ^ 2 ) = B ) |
3 |
2
|
eqeq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) = ( ( sqrt ` B ) ^ 2 ) <-> ( A ^ 2 ) = B ) ) |
4 |
|
sqrtcl |
|- ( B e. CC -> ( sqrt ` B ) e. CC ) |
5 |
|
sqeqor |
|- ( ( A e. CC /\ ( sqrt ` B ) e. CC ) -> ( ( A ^ 2 ) = ( ( sqrt ` B ) ^ 2 ) <-> ( A = ( sqrt ` B ) \/ A = -u ( sqrt ` B ) ) ) ) |
6 |
4 5
|
sylan2 |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) = ( ( sqrt ` B ) ^ 2 ) <-> ( A = ( sqrt ` B ) \/ A = -u ( sqrt ` B ) ) ) ) |
7 |
3 6
|
bitr3d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) = B <-> ( A = ( sqrt ` B ) \/ A = -u ( sqrt ` B ) ) ) ) |