Description: The subclass relationship is antisymmetric. Compare Theorem 4 of Suppes p. 22. (Contributed by NM, 21-May-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | eqss | |- ( A = B <-> ( A C_ B /\ B C_ A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albiim | |- ( A. x ( x e. A <-> x e. B ) <-> ( A. x ( x e. A -> x e. B ) /\ A. x ( x e. B -> x e. A ) ) ) |
|
2 | dfcleq | |- ( A = B <-> A. x ( x e. A <-> x e. B ) ) |
|
3 | dfss2 | |- ( A C_ B <-> A. x ( x e. A -> x e. B ) ) |
|
4 | dfss2 | |- ( B C_ A <-> A. x ( x e. B -> x e. A ) ) |
|
5 | 3 4 | anbi12i | |- ( ( A C_ B /\ B C_ A ) <-> ( A. x ( x e. A -> x e. B ) /\ A. x ( x e. B -> x e. A ) ) ) |
6 | 1 2 5 | 3bitr4i | |- ( A = B <-> ( A C_ B /\ B C_ A ) ) |