Metamath Proof Explorer


Theorem eqss

Description: The subclass relationship is antisymmetric. Compare Theorem 4 of Suppes p. 22. (Contributed by NM, 21-May-1993)

Ref Expression
Assertion eqss
|- ( A = B <-> ( A C_ B /\ B C_ A ) )

Proof

Step Hyp Ref Expression
1 albiim
 |-  ( A. x ( x e. A <-> x e. B ) <-> ( A. x ( x e. A -> x e. B ) /\ A. x ( x e. B -> x e. A ) ) )
2 dfcleq
 |-  ( A = B <-> A. x ( x e. A <-> x e. B ) )
3 dfss2
 |-  ( A C_ B <-> A. x ( x e. A -> x e. B ) )
4 dfss2
 |-  ( B C_ A <-> A. x ( x e. B -> x e. A ) )
5 3 4 anbi12i
 |-  ( ( A C_ B /\ B C_ A ) <-> ( A. x ( x e. A -> x e. B ) /\ A. x ( x e. B -> x e. A ) ) )
6 1 2 5 3bitr4i
 |-  ( A = B <-> ( A C_ B /\ B C_ A ) )