Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqsstrd.1 | |- ( ph -> A = B ) |
|
| eqsstrd.2 | |- ( ph -> B C_ C ) |
||
| Assertion | eqsstrd | |- ( ph -> A C_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrd.1 | |- ( ph -> A = B ) |
|
| 2 | eqsstrd.2 | |- ( ph -> B C_ C ) |
|
| 3 | 1 | sseq1d | |- ( ph -> ( A C_ C <-> B C_ C ) ) |
| 4 | 2 3 | mpbird | |- ( ph -> A C_ C ) |