Metamath Proof Explorer


Theorem eqsstrrdi

Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses eqsstrrdi.1
|- ( ph -> B = A )
eqsstrrdi.2
|- B C_ C
Assertion eqsstrrdi
|- ( ph -> A C_ C )

Proof

Step Hyp Ref Expression
1 eqsstrrdi.1
 |-  ( ph -> B = A )
2 eqsstrrdi.2
 |-  B C_ C
3 1 eqcomd
 |-  ( ph -> A = B )
4 3 2 eqsstrdi
 |-  ( ph -> A C_ C )