Metamath Proof Explorer


Theorem eqsstrri

Description: Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999)

Ref Expression
Hypotheses eqsstr3.1
|- B = A
eqsstr3.2
|- B C_ C
Assertion eqsstrri
|- A C_ C

Proof

Step Hyp Ref Expression
1 eqsstr3.1
 |-  B = A
2 eqsstr3.2
 |-  B C_ C
3 1 eqcomi
 |-  A = B
4 3 2 eqsstri
 |-  A C_ C