Metamath Proof Explorer
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004)
|
|
Ref |
Expression |
|
Hypotheses |
eqsstrrid.1 |
|- B = A |
|
|
eqsstrrid.2 |
|- ( ph -> B C_ C ) |
|
Assertion |
eqsstrrid |
|- ( ph -> A C_ C ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqsstrrid.1 |
|- B = A |
| 2 |
|
eqsstrrid.2 |
|- ( ph -> B C_ C ) |
| 3 |
1
|
eqcomi |
|- A = B |
| 4 |
3 2
|
eqsstrid |
|- ( ph -> A C_ C ) |