Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqtr4id.2 | |- A = B |
|
| eqtr4id.1 | |- ( ph -> C = B ) |
||
| Assertion | eqtr4id | |- ( ph -> A = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4id.2 | |- A = B |
|
| 2 | eqtr4id.1 | |- ( ph -> C = B ) |
|
| 3 | 1 | eqcomi | |- B = A |
| 4 | 2 3 | eqtr2di | |- ( ph -> A = C ) |