Metamath Proof Explorer


Theorem equid1ALT

Description: Alternate proof of equid and equid1 from older axioms ax-c7 , ax-c10 and ax-c9 . (Contributed by NM, 10-Jan-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion equid1ALT
|- x = x

Proof

Step Hyp Ref Expression
1 ax-c9
 |-  ( -. A. x x = x -> ( -. A. x x = x -> ( x = x -> A. x x = x ) ) )
2 1 pm2.43i
 |-  ( -. A. x x = x -> ( x = x -> A. x x = x ) )
3 2 alimi
 |-  ( A. x -. A. x x = x -> A. x ( x = x -> A. x x = x ) )
4 ax-c10
 |-  ( A. x ( x = x -> A. x x = x ) -> x = x )
5 3 4 syl
 |-  ( A. x -. A. x x = x -> x = x )
6 ax-c7
 |-  ( -. A. x -. A. x x = x -> x = x )
7 5 6 pm2.61i
 |-  x = x