Metamath Proof Explorer


Theorem equidqe

Description: equid with existential quantifier without using ax-c5 or ax-5 . (Contributed by NM, 13-Jan-2011) (Proof shortened by Wolf Lammen, 27-Feb-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion equidqe
|- -. A. y -. x = x

Proof

Step Hyp Ref Expression
1 ax6fromc10
 |-  -. A. y -. y = x
2 ax7
 |-  ( y = x -> ( y = x -> x = x ) )
3 2 pm2.43i
 |-  ( y = x -> x = x )
4 3 con3i
 |-  ( -. x = x -> -. y = x )
5 4 alimi
 |-  ( A. y -. x = x -> A. y -. y = x )
6 1 5 mto
 |-  -. A. y -. x = x