Step |
Hyp |
Ref |
Expression |
1 |
|
equivcau.1 |
|- ( ph -> C e. ( Met ` X ) ) |
2 |
|
equivcau.2 |
|- ( ph -> D e. ( Met ` X ) ) |
3 |
|
equivcau.3 |
|- ( ph -> R e. RR+ ) |
4 |
|
equivcau.4 |
|- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x C y ) <_ ( R x. ( x D y ) ) ) |
5 |
|
simpr |
|- ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) -> r e. RR+ ) |
6 |
3
|
ad2antrr |
|- ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) -> R e. RR+ ) |
7 |
5 6
|
rpdivcld |
|- ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) -> ( r / R ) e. RR+ ) |
8 |
|
oveq2 |
|- ( s = ( r / R ) -> ( ( f ` k ) ( ball ` D ) s ) = ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) |
9 |
8
|
feq3d |
|- ( s = ( r / R ) -> ( ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) s ) <-> ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) |
10 |
9
|
rexbidv |
|- ( s = ( r / R ) -> ( E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) s ) <-> E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) |
11 |
10
|
rspcv |
|- ( ( r / R ) e. RR+ -> ( A. s e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) s ) -> E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) |
12 |
7 11
|
syl |
|- ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) -> ( A. s e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) s ) -> E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) |
13 |
|
simprr |
|- ( ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) /\ ( k e. ZZ /\ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) -> ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) |
14 |
|
elpmi |
|- ( f e. ( X ^pm CC ) -> ( f : dom f --> X /\ dom f C_ CC ) ) |
15 |
14
|
simpld |
|- ( f e. ( X ^pm CC ) -> f : dom f --> X ) |
16 |
15
|
ad3antlr |
|- ( ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) /\ ( k e. ZZ /\ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) -> f : dom f --> X ) |
17 |
|
resss |
|- ( f |` ( ZZ>= ` k ) ) C_ f |
18 |
|
dmss |
|- ( ( f |` ( ZZ>= ` k ) ) C_ f -> dom ( f |` ( ZZ>= ` k ) ) C_ dom f ) |
19 |
17 18
|
ax-mp |
|- dom ( f |` ( ZZ>= ` k ) ) C_ dom f |
20 |
|
uzid |
|- ( k e. ZZ -> k e. ( ZZ>= ` k ) ) |
21 |
20
|
ad2antrl |
|- ( ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) /\ ( k e. ZZ /\ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) -> k e. ( ZZ>= ` k ) ) |
22 |
|
fdm |
|- ( ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) -> dom ( f |` ( ZZ>= ` k ) ) = ( ZZ>= ` k ) ) |
23 |
22
|
ad2antll |
|- ( ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) /\ ( k e. ZZ /\ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) -> dom ( f |` ( ZZ>= ` k ) ) = ( ZZ>= ` k ) ) |
24 |
21 23
|
eleqtrrd |
|- ( ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) /\ ( k e. ZZ /\ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) -> k e. dom ( f |` ( ZZ>= ` k ) ) ) |
25 |
19 24
|
sselid |
|- ( ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) /\ ( k e. ZZ /\ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) -> k e. dom f ) |
26 |
16 25
|
ffvelrnd |
|- ( ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) /\ ( k e. ZZ /\ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) -> ( f ` k ) e. X ) |
27 |
|
eqid |
|- ( MetOpen ` C ) = ( MetOpen ` C ) |
28 |
|
eqid |
|- ( MetOpen ` D ) = ( MetOpen ` D ) |
29 |
27 28 1 2 3 4
|
metss2lem |
|- ( ( ph /\ ( x e. X /\ r e. RR+ ) ) -> ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) |
30 |
29
|
expr |
|- ( ( ph /\ x e. X ) -> ( r e. RR+ -> ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) ) |
31 |
30
|
ralrimiva |
|- ( ph -> A. x e. X ( r e. RR+ -> ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) ) |
32 |
31
|
ad3antrrr |
|- ( ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) /\ ( k e. ZZ /\ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) -> A. x e. X ( r e. RR+ -> ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) ) |
33 |
|
simplr |
|- ( ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) /\ ( k e. ZZ /\ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) -> r e. RR+ ) |
34 |
|
oveq1 |
|- ( x = ( f ` k ) -> ( x ( ball ` D ) ( r / R ) ) = ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) |
35 |
|
oveq1 |
|- ( x = ( f ` k ) -> ( x ( ball ` C ) r ) = ( ( f ` k ) ( ball ` C ) r ) ) |
36 |
34 35
|
sseq12d |
|- ( x = ( f ` k ) -> ( ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) <-> ( ( f ` k ) ( ball ` D ) ( r / R ) ) C_ ( ( f ` k ) ( ball ` C ) r ) ) ) |
37 |
36
|
imbi2d |
|- ( x = ( f ` k ) -> ( ( r e. RR+ -> ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) <-> ( r e. RR+ -> ( ( f ` k ) ( ball ` D ) ( r / R ) ) C_ ( ( f ` k ) ( ball ` C ) r ) ) ) ) |
38 |
37
|
rspcv |
|- ( ( f ` k ) e. X -> ( A. x e. X ( r e. RR+ -> ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) -> ( r e. RR+ -> ( ( f ` k ) ( ball ` D ) ( r / R ) ) C_ ( ( f ` k ) ( ball ` C ) r ) ) ) ) |
39 |
26 32 33 38
|
syl3c |
|- ( ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) /\ ( k e. ZZ /\ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) -> ( ( f ` k ) ( ball ` D ) ( r / R ) ) C_ ( ( f ` k ) ( ball ` C ) r ) ) |
40 |
13 39
|
fssd |
|- ( ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) /\ ( k e. ZZ /\ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) -> ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` C ) r ) ) |
41 |
40
|
expr |
|- ( ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) /\ k e. ZZ ) -> ( ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) -> ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` C ) r ) ) ) |
42 |
41
|
reximdva |
|- ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) -> ( E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) -> E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` C ) r ) ) ) |
43 |
12 42
|
syld |
|- ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) -> ( A. s e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) s ) -> E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` C ) r ) ) ) |
44 |
43
|
ralrimdva |
|- ( ( ph /\ f e. ( X ^pm CC ) ) -> ( A. s e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) s ) -> A. r e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` C ) r ) ) ) |
45 |
44
|
ss2rabdv |
|- ( ph -> { f e. ( X ^pm CC ) | A. s e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) s ) } C_ { f e. ( X ^pm CC ) | A. r e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` C ) r ) } ) |
46 |
|
metxmet |
|- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
47 |
|
caufval |
|- ( D e. ( *Met ` X ) -> ( Cau ` D ) = { f e. ( X ^pm CC ) | A. s e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) s ) } ) |
48 |
2 46 47
|
3syl |
|- ( ph -> ( Cau ` D ) = { f e. ( X ^pm CC ) | A. s e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) s ) } ) |
49 |
|
metxmet |
|- ( C e. ( Met ` X ) -> C e. ( *Met ` X ) ) |
50 |
|
caufval |
|- ( C e. ( *Met ` X ) -> ( Cau ` C ) = { f e. ( X ^pm CC ) | A. r e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` C ) r ) } ) |
51 |
1 49 50
|
3syl |
|- ( ph -> ( Cau ` C ) = { f e. ( X ^pm CC ) | A. r e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` C ) r ) } ) |
52 |
45 48 51
|
3sstr4d |
|- ( ph -> ( Cau ` D ) C_ ( Cau ` C ) ) |