Step |
Hyp |
Ref |
Expression |
1 |
|
equivcmet.1 |
|- ( ph -> C e. ( Met ` X ) ) |
2 |
|
equivcmet.2 |
|- ( ph -> D e. ( Met ` X ) ) |
3 |
|
equivcmet.3 |
|- ( ph -> R e. RR+ ) |
4 |
|
equivcmet.4 |
|- ( ph -> S e. RR+ ) |
5 |
|
equivcmet.5 |
|- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x C y ) <_ ( R x. ( x D y ) ) ) |
6 |
|
equivcmet.6 |
|- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x D y ) <_ ( S x. ( x C y ) ) ) |
7 |
1 2
|
2thd |
|- ( ph -> ( C e. ( Met ` X ) <-> D e. ( Met ` X ) ) ) |
8 |
2 1 4 6
|
equivcfil |
|- ( ph -> ( CauFil ` C ) C_ ( CauFil ` D ) ) |
9 |
1 2 3 5
|
equivcfil |
|- ( ph -> ( CauFil ` D ) C_ ( CauFil ` C ) ) |
10 |
8 9
|
eqssd |
|- ( ph -> ( CauFil ` C ) = ( CauFil ` D ) ) |
11 |
|
eqid |
|- ( MetOpen ` C ) = ( MetOpen ` C ) |
12 |
|
eqid |
|- ( MetOpen ` D ) = ( MetOpen ` D ) |
13 |
11 12 1 2 3 5
|
metss2 |
|- ( ph -> ( MetOpen ` C ) C_ ( MetOpen ` D ) ) |
14 |
12 11 2 1 4 6
|
metss2 |
|- ( ph -> ( MetOpen ` D ) C_ ( MetOpen ` C ) ) |
15 |
13 14
|
eqssd |
|- ( ph -> ( MetOpen ` C ) = ( MetOpen ` D ) ) |
16 |
15
|
oveq1d |
|- ( ph -> ( ( MetOpen ` C ) fLim f ) = ( ( MetOpen ` D ) fLim f ) ) |
17 |
16
|
neeq1d |
|- ( ph -> ( ( ( MetOpen ` C ) fLim f ) =/= (/) <-> ( ( MetOpen ` D ) fLim f ) =/= (/) ) ) |
18 |
10 17
|
raleqbidv |
|- ( ph -> ( A. f e. ( CauFil ` C ) ( ( MetOpen ` C ) fLim f ) =/= (/) <-> A. f e. ( CauFil ` D ) ( ( MetOpen ` D ) fLim f ) =/= (/) ) ) |
19 |
7 18
|
anbi12d |
|- ( ph -> ( ( C e. ( Met ` X ) /\ A. f e. ( CauFil ` C ) ( ( MetOpen ` C ) fLim f ) =/= (/) ) <-> ( D e. ( Met ` X ) /\ A. f e. ( CauFil ` D ) ( ( MetOpen ` D ) fLim f ) =/= (/) ) ) ) |
20 |
11
|
iscmet |
|- ( C e. ( CMet ` X ) <-> ( C e. ( Met ` X ) /\ A. f e. ( CauFil ` C ) ( ( MetOpen ` C ) fLim f ) =/= (/) ) ) |
21 |
12
|
iscmet |
|- ( D e. ( CMet ` X ) <-> ( D e. ( Met ` X ) /\ A. f e. ( CauFil ` D ) ( ( MetOpen ` D ) fLim f ) =/= (/) ) ) |
22 |
19 20 21
|
3bitr4g |
|- ( ph -> ( C e. ( CMet ` X ) <-> D e. ( CMet ` X ) ) ) |