Step |
Hyp |
Ref |
Expression |
1 |
|
equivtotbnd.1 |
|- ( ph -> M e. ( TotBnd ` X ) ) |
2 |
|
equivtotbnd.2 |
|- ( ph -> N e. ( Met ` X ) ) |
3 |
|
equivtotbnd.3 |
|- ( ph -> R e. RR+ ) |
4 |
|
equivtotbnd.4 |
|- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x N y ) <_ ( R x. ( x M y ) ) ) |
5 |
|
simpr |
|- ( ( ph /\ r e. RR+ ) -> r e. RR+ ) |
6 |
3
|
adantr |
|- ( ( ph /\ r e. RR+ ) -> R e. RR+ ) |
7 |
5 6
|
rpdivcld |
|- ( ( ph /\ r e. RR+ ) -> ( r / R ) e. RR+ ) |
8 |
1
|
adantr |
|- ( ( ph /\ r e. RR+ ) -> M e. ( TotBnd ` X ) ) |
9 |
|
istotbnd3 |
|- ( M e. ( TotBnd ` X ) <-> ( M e. ( Met ` X ) /\ A. s e. RR+ E. v e. ( ~P X i^i Fin ) U_ x e. v ( x ( ball ` M ) s ) = X ) ) |
10 |
9
|
simprbi |
|- ( M e. ( TotBnd ` X ) -> A. s e. RR+ E. v e. ( ~P X i^i Fin ) U_ x e. v ( x ( ball ` M ) s ) = X ) |
11 |
8 10
|
syl |
|- ( ( ph /\ r e. RR+ ) -> A. s e. RR+ E. v e. ( ~P X i^i Fin ) U_ x e. v ( x ( ball ` M ) s ) = X ) |
12 |
|
oveq2 |
|- ( s = ( r / R ) -> ( x ( ball ` M ) s ) = ( x ( ball ` M ) ( r / R ) ) ) |
13 |
12
|
iuneq2d |
|- ( s = ( r / R ) -> U_ x e. v ( x ( ball ` M ) s ) = U_ x e. v ( x ( ball ` M ) ( r / R ) ) ) |
14 |
13
|
eqeq1d |
|- ( s = ( r / R ) -> ( U_ x e. v ( x ( ball ` M ) s ) = X <-> U_ x e. v ( x ( ball ` M ) ( r / R ) ) = X ) ) |
15 |
14
|
rexbidv |
|- ( s = ( r / R ) -> ( E. v e. ( ~P X i^i Fin ) U_ x e. v ( x ( ball ` M ) s ) = X <-> E. v e. ( ~P X i^i Fin ) U_ x e. v ( x ( ball ` M ) ( r / R ) ) = X ) ) |
16 |
15
|
rspcv |
|- ( ( r / R ) e. RR+ -> ( A. s e. RR+ E. v e. ( ~P X i^i Fin ) U_ x e. v ( x ( ball ` M ) s ) = X -> E. v e. ( ~P X i^i Fin ) U_ x e. v ( x ( ball ` M ) ( r / R ) ) = X ) ) |
17 |
7 11 16
|
sylc |
|- ( ( ph /\ r e. RR+ ) -> E. v e. ( ~P X i^i Fin ) U_ x e. v ( x ( ball ` M ) ( r / R ) ) = X ) |
18 |
|
elfpw |
|- ( v e. ( ~P X i^i Fin ) <-> ( v C_ X /\ v e. Fin ) ) |
19 |
18
|
simplbi |
|- ( v e. ( ~P X i^i Fin ) -> v C_ X ) |
20 |
19
|
adantl |
|- ( ( ( ph /\ r e. RR+ ) /\ v e. ( ~P X i^i Fin ) ) -> v C_ X ) |
21 |
20
|
sselda |
|- ( ( ( ( ph /\ r e. RR+ ) /\ v e. ( ~P X i^i Fin ) ) /\ x e. v ) -> x e. X ) |
22 |
|
eqid |
|- ( MetOpen ` N ) = ( MetOpen ` N ) |
23 |
|
eqid |
|- ( MetOpen ` M ) = ( MetOpen ` M ) |
24 |
9
|
simplbi |
|- ( M e. ( TotBnd ` X ) -> M e. ( Met ` X ) ) |
25 |
1 24
|
syl |
|- ( ph -> M e. ( Met ` X ) ) |
26 |
22 23 2 25 3 4
|
metss2lem |
|- ( ( ph /\ ( x e. X /\ r e. RR+ ) ) -> ( x ( ball ` M ) ( r / R ) ) C_ ( x ( ball ` N ) r ) ) |
27 |
26
|
anass1rs |
|- ( ( ( ph /\ r e. RR+ ) /\ x e. X ) -> ( x ( ball ` M ) ( r / R ) ) C_ ( x ( ball ` N ) r ) ) |
28 |
27
|
adantlr |
|- ( ( ( ( ph /\ r e. RR+ ) /\ v e. ( ~P X i^i Fin ) ) /\ x e. X ) -> ( x ( ball ` M ) ( r / R ) ) C_ ( x ( ball ` N ) r ) ) |
29 |
21 28
|
syldan |
|- ( ( ( ( ph /\ r e. RR+ ) /\ v e. ( ~P X i^i Fin ) ) /\ x e. v ) -> ( x ( ball ` M ) ( r / R ) ) C_ ( x ( ball ` N ) r ) ) |
30 |
29
|
ralrimiva |
|- ( ( ( ph /\ r e. RR+ ) /\ v e. ( ~P X i^i Fin ) ) -> A. x e. v ( x ( ball ` M ) ( r / R ) ) C_ ( x ( ball ` N ) r ) ) |
31 |
|
ss2iun |
|- ( A. x e. v ( x ( ball ` M ) ( r / R ) ) C_ ( x ( ball ` N ) r ) -> U_ x e. v ( x ( ball ` M ) ( r / R ) ) C_ U_ x e. v ( x ( ball ` N ) r ) ) |
32 |
30 31
|
syl |
|- ( ( ( ph /\ r e. RR+ ) /\ v e. ( ~P X i^i Fin ) ) -> U_ x e. v ( x ( ball ` M ) ( r / R ) ) C_ U_ x e. v ( x ( ball ` N ) r ) ) |
33 |
|
sseq1 |
|- ( U_ x e. v ( x ( ball ` M ) ( r / R ) ) = X -> ( U_ x e. v ( x ( ball ` M ) ( r / R ) ) C_ U_ x e. v ( x ( ball ` N ) r ) <-> X C_ U_ x e. v ( x ( ball ` N ) r ) ) ) |
34 |
32 33
|
syl5ibcom |
|- ( ( ( ph /\ r e. RR+ ) /\ v e. ( ~P X i^i Fin ) ) -> ( U_ x e. v ( x ( ball ` M ) ( r / R ) ) = X -> X C_ U_ x e. v ( x ( ball ` N ) r ) ) ) |
35 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ r e. RR+ ) /\ v e. ( ~P X i^i Fin ) ) /\ x e. v ) -> N e. ( Met ` X ) ) |
36 |
|
metxmet |
|- ( N e. ( Met ` X ) -> N e. ( *Met ` X ) ) |
37 |
35 36
|
syl |
|- ( ( ( ( ph /\ r e. RR+ ) /\ v e. ( ~P X i^i Fin ) ) /\ x e. v ) -> N e. ( *Met ` X ) ) |
38 |
|
simpllr |
|- ( ( ( ( ph /\ r e. RR+ ) /\ v e. ( ~P X i^i Fin ) ) /\ x e. v ) -> r e. RR+ ) |
39 |
38
|
rpxrd |
|- ( ( ( ( ph /\ r e. RR+ ) /\ v e. ( ~P X i^i Fin ) ) /\ x e. v ) -> r e. RR* ) |
40 |
|
blssm |
|- ( ( N e. ( *Met ` X ) /\ x e. X /\ r e. RR* ) -> ( x ( ball ` N ) r ) C_ X ) |
41 |
37 21 39 40
|
syl3anc |
|- ( ( ( ( ph /\ r e. RR+ ) /\ v e. ( ~P X i^i Fin ) ) /\ x e. v ) -> ( x ( ball ` N ) r ) C_ X ) |
42 |
41
|
ralrimiva |
|- ( ( ( ph /\ r e. RR+ ) /\ v e. ( ~P X i^i Fin ) ) -> A. x e. v ( x ( ball ` N ) r ) C_ X ) |
43 |
|
iunss |
|- ( U_ x e. v ( x ( ball ` N ) r ) C_ X <-> A. x e. v ( x ( ball ` N ) r ) C_ X ) |
44 |
42 43
|
sylibr |
|- ( ( ( ph /\ r e. RR+ ) /\ v e. ( ~P X i^i Fin ) ) -> U_ x e. v ( x ( ball ` N ) r ) C_ X ) |
45 |
34 44
|
jctild |
|- ( ( ( ph /\ r e. RR+ ) /\ v e. ( ~P X i^i Fin ) ) -> ( U_ x e. v ( x ( ball ` M ) ( r / R ) ) = X -> ( U_ x e. v ( x ( ball ` N ) r ) C_ X /\ X C_ U_ x e. v ( x ( ball ` N ) r ) ) ) ) |
46 |
|
eqss |
|- ( U_ x e. v ( x ( ball ` N ) r ) = X <-> ( U_ x e. v ( x ( ball ` N ) r ) C_ X /\ X C_ U_ x e. v ( x ( ball ` N ) r ) ) ) |
47 |
45 46
|
syl6ibr |
|- ( ( ( ph /\ r e. RR+ ) /\ v e. ( ~P X i^i Fin ) ) -> ( U_ x e. v ( x ( ball ` M ) ( r / R ) ) = X -> U_ x e. v ( x ( ball ` N ) r ) = X ) ) |
48 |
47
|
reximdva |
|- ( ( ph /\ r e. RR+ ) -> ( E. v e. ( ~P X i^i Fin ) U_ x e. v ( x ( ball ` M ) ( r / R ) ) = X -> E. v e. ( ~P X i^i Fin ) U_ x e. v ( x ( ball ` N ) r ) = X ) ) |
49 |
17 48
|
mpd |
|- ( ( ph /\ r e. RR+ ) -> E. v e. ( ~P X i^i Fin ) U_ x e. v ( x ( ball ` N ) r ) = X ) |
50 |
49
|
ralrimiva |
|- ( ph -> A. r e. RR+ E. v e. ( ~P X i^i Fin ) U_ x e. v ( x ( ball ` N ) r ) = X ) |
51 |
|
istotbnd3 |
|- ( N e. ( TotBnd ` X ) <-> ( N e. ( Met ` X ) /\ A. r e. RR+ E. v e. ( ~P X i^i Fin ) U_ x e. v ( x ( ball ` N ) r ) = X ) ) |
52 |
2 50 51
|
sylanbrc |
|- ( ph -> N e. ( TotBnd ` X ) ) |