Metamath Proof Explorer


Theorem equs4v

Description: Version of equs4 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 10-May-1993) (Revised by BJ, 31-May-2019)

Ref Expression
Assertion equs4v
|- ( A. x ( x = y -> ph ) -> E. x ( x = y /\ ph ) )

Proof

Step Hyp Ref Expression
1 ax6ev
 |-  E. x x = y
2 exintr
 |-  ( A. x ( x = y -> ph ) -> ( E. x x = y -> E. x ( x = y /\ ph ) ) )
3 1 2 mpi
 |-  ( A. x ( x = y -> ph ) -> E. x ( x = y /\ ph ) )