Metamath Proof Explorer


Theorem equs5aALT

Description: Alternate proof of equs5a . Uses ax-12 but not ax-13 . (Contributed by NM, 2-Feb-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion equs5aALT
|- ( E. x ( x = y /\ A. y ph ) -> A. x ( x = y -> ph ) )

Proof

Step Hyp Ref Expression
1 nfa1
 |-  F/ x A. x ( x = y -> ph )
2 ax-12
 |-  ( x = y -> ( A. y ph -> A. x ( x = y -> ph ) ) )
3 2 imp
 |-  ( ( x = y /\ A. y ph ) -> A. x ( x = y -> ph ) )
4 1 3 exlimi
 |-  ( E. x ( x = y /\ A. y ph ) -> A. x ( x = y -> ph ) )