Metamath Proof Explorer


Theorem equs5eALT

Description: Alternate proof of equs5e . Uses ax-12 but not ax-13 . (Contributed by NM, 2-Feb-2007) (Proof shortened by Wolf Lammen, 15-Jan-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion equs5eALT
|- ( E. x ( x = y /\ ph ) -> A. x ( x = y -> E. y ph ) )

Proof

Step Hyp Ref Expression
1 nfa1
 |-  F/ x A. x ( x = y -> E. y ph )
2 hbe1
 |-  ( E. y ph -> A. y E. y ph )
3 2 19.23bi
 |-  ( ph -> A. y E. y ph )
4 ax-12
 |-  ( x = y -> ( A. y E. y ph -> A. x ( x = y -> E. y ph ) ) )
5 3 4 syl5
 |-  ( x = y -> ( ph -> A. x ( x = y -> E. y ph ) ) )
6 5 imp
 |-  ( ( x = y /\ ph ) -> A. x ( x = y -> E. y ph ) )
7 1 6 exlimi
 |-  ( E. x ( x = y /\ ph ) -> A. x ( x = y -> E. y ph ) )