Description: Version of equsalh with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 29-Nov-2015) (Proof shortened by Wolf Lammen, 8-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | equsalhw.1 | |- ( ps -> A. x ps ) |
|
equsalhw.2 | |- ( x = y -> ( ph <-> ps ) ) |
||
Assertion | equsalhw | |- ( A. x ( x = y -> ph ) <-> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsalhw.1 | |- ( ps -> A. x ps ) |
|
2 | equsalhw.2 | |- ( x = y -> ( ph <-> ps ) ) |
|
3 | 1 | nf5i | |- F/ x ps |
4 | 3 2 | equsalv | |- ( A. x ( x = y -> ph ) <-> ps ) |