Metamath Proof Explorer


Theorem equsexhv

Description: An equivalence related to implicit substitution. Version of equsexh with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 5-Aug-1993) (Revised by BJ, 31-May-2019)

Ref Expression
Hypotheses equsalhw.1
|- ( ps -> A. x ps )
equsalhw.2
|- ( x = y -> ( ph <-> ps ) )
Assertion equsexhv
|- ( E. x ( x = y /\ ph ) <-> ps )

Proof

Step Hyp Ref Expression
1 equsalhw.1
 |-  ( ps -> A. x ps )
2 equsalhw.2
 |-  ( x = y -> ( ph <-> ps ) )
3 1 nf5i
 |-  F/ x ps
4 3 2 equsexv
 |-  ( E. x ( x = y /\ ph ) <-> ps )