Description: Version of equsexv with a disjoint variable condition, and of equsex with two disjoint variable conditions, which requires fewer axioms. See also the dual form equsalvw . (Contributed by BJ, 31-May-2019) (Proof shortened by Wolf Lammen, 23-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | equsalvw.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
Assertion | equsexvw | |- ( E. x ( x = y /\ ph ) <-> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsalvw.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
2 | alinexa | |- ( A. x ( x = y -> -. ph ) <-> -. E. x ( x = y /\ ph ) ) |
|
3 | 1 | notbid | |- ( x = y -> ( -. ph <-> -. ps ) ) |
4 | 3 | equsalvw | |- ( A. x ( x = y -> -. ph ) <-> -. ps ) |
5 | 2 4 | bitr3i | |- ( -. E. x ( x = y /\ ph ) <-> -. ps ) |
6 | 5 | con4bii | |- ( E. x ( x = y /\ ph ) <-> ps ) |