Description: A modified version of the forward implication of equvinv adapted to common usage. (Contributed by Wolf Lammen, 8-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | equvinva | |- ( x = y -> E. z ( x = z /\ y = z ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6evr | |- E. z y = z |
|
2 | equtr | |- ( x = y -> ( y = z -> x = z ) ) |
|
3 | 2 | ancrd | |- ( x = y -> ( y = z -> ( x = z /\ y = z ) ) ) |
4 | 3 | eximdv | |- ( x = y -> ( E. z y = z -> E. z ( x = z /\ y = z ) ) ) |
5 | 1 4 | mpi | |- ( x = y -> E. z ( x = z /\ y = z ) ) |