Metamath Proof Explorer


Theorem equvinva

Description: A modified version of the forward implication of equvinv adapted to common usage. (Contributed by Wolf Lammen, 8-Sep-2018)

Ref Expression
Assertion equvinva
|- ( x = y -> E. z ( x = z /\ y = z ) )

Proof

Step Hyp Ref Expression
1 ax6evr
 |-  E. z y = z
2 equtr
 |-  ( x = y -> ( y = z -> x = z ) )
3 2 ancrd
 |-  ( x = y -> ( y = z -> ( x = z /\ y = z ) ) )
4 3 eximdv
 |-  ( x = y -> ( E. z y = z -> E. z ( x = z /\ y = z ) ) )
5 1 4 mpi
 |-  ( x = y -> E. z ( x = z /\ y = z ) )