Metamath Proof Explorer


Theorem eqv

Description: The universe contains every set. (Contributed by NM, 11-Sep-2006) Remove dependency on ax-10 , ax-11 , ax-13 . (Revised by BJ, 10-Aug-2022)

Ref Expression
Assertion eqv
|- ( A = _V <-> A. x x e. A )

Proof

Step Hyp Ref Expression
1 dfcleq
 |-  ( A = _V <-> A. x ( x e. A <-> x e. _V ) )
2 vex
 |-  x e. _V
3 2 tbt
 |-  ( x e. A <-> ( x e. A <-> x e. _V ) )
4 3 albii
 |-  ( A. x x e. A <-> A. x ( x e. A <-> x e. _V ) )
5 1 4 bitr4i
 |-  ( A = _V <-> A. x x e. A )