Metamath Proof Explorer


Theorem eqvf

Description: The universe contains every set. (Contributed by BJ, 15-Jul-2021)

Ref Expression
Hypothesis eqvf.1
|- F/_ x A
Assertion eqvf
|- ( A = _V <-> A. x x e. A )

Proof

Step Hyp Ref Expression
1 eqvf.1
 |-  F/_ x A
2 nfcv
 |-  F/_ x _V
3 1 2 cleqf
 |-  ( A = _V <-> A. x ( x e. A <-> x e. _V ) )
4 vex
 |-  x e. _V
5 4 tbt
 |-  ( x e. A <-> ( x e. A <-> x e. _V ) )
6 5 albii
 |-  ( A. x x e. A <-> A. x ( x e. A <-> x e. _V ) )
7 3 6 bitr4i
 |-  ( A = _V <-> A. x x e. A )