Step |
Hyp |
Ref |
Expression |
1 |
|
eqvincf.1 |
|- F/_ x A |
2 |
|
eqvincf.2 |
|- F/_ x B |
3 |
|
eqvincf.3 |
|- A e. _V |
4 |
3
|
eqvinc |
|- ( A = B <-> E. y ( y = A /\ y = B ) ) |
5 |
1
|
nfeq2 |
|- F/ x y = A |
6 |
2
|
nfeq2 |
|- F/ x y = B |
7 |
5 6
|
nfan |
|- F/ x ( y = A /\ y = B ) |
8 |
|
nfv |
|- F/ y ( x = A /\ x = B ) |
9 |
|
eqeq1 |
|- ( y = x -> ( y = A <-> x = A ) ) |
10 |
|
eqeq1 |
|- ( y = x -> ( y = B <-> x = B ) ) |
11 |
9 10
|
anbi12d |
|- ( y = x -> ( ( y = A /\ y = B ) <-> ( x = A /\ x = B ) ) ) |
12 |
7 8 11
|
cbvexv1 |
|- ( E. y ( y = A /\ y = B ) <-> E. x ( x = A /\ x = B ) ) |
13 |
4 12
|
bitri |
|- ( A = B <-> E. x ( x = A /\ x = B ) ) |