Step |
Hyp |
Ref |
Expression |
1 |
|
elisset |
|- ( A e. V -> E. x x = A ) |
2 |
|
ax-1 |
|- ( x = A -> ( A = B -> x = A ) ) |
3 |
|
eqtr |
|- ( ( x = A /\ A = B ) -> x = B ) |
4 |
3
|
ex |
|- ( x = A -> ( A = B -> x = B ) ) |
5 |
2 4
|
jca |
|- ( x = A -> ( ( A = B -> x = A ) /\ ( A = B -> x = B ) ) ) |
6 |
5
|
eximi |
|- ( E. x x = A -> E. x ( ( A = B -> x = A ) /\ ( A = B -> x = B ) ) ) |
7 |
|
pm3.43 |
|- ( ( ( A = B -> x = A ) /\ ( A = B -> x = B ) ) -> ( A = B -> ( x = A /\ x = B ) ) ) |
8 |
7
|
eximi |
|- ( E. x ( ( A = B -> x = A ) /\ ( A = B -> x = B ) ) -> E. x ( A = B -> ( x = A /\ x = B ) ) ) |
9 |
1 6 8
|
3syl |
|- ( A e. V -> E. x ( A = B -> ( x = A /\ x = B ) ) ) |
10 |
|
19.37v |
|- ( E. x ( A = B -> ( x = A /\ x = B ) ) <-> ( A = B -> E. x ( x = A /\ x = B ) ) ) |
11 |
9 10
|
sylib |
|- ( A e. V -> ( A = B -> E. x ( x = A /\ x = B ) ) ) |
12 |
|
eqtr2 |
|- ( ( x = A /\ x = B ) -> A = B ) |
13 |
12
|
exlimiv |
|- ( E. x ( x = A /\ x = B ) -> A = B ) |
14 |
11 13
|
impbid1 |
|- ( A e. V -> ( A = B <-> E. x ( x = A /\ x = B ) ) ) |