Step |
Hyp |
Ref |
Expression |
1 |
|
eqvinop.1 |
|- B e. _V |
2 |
|
eqvinop.2 |
|- C e. _V |
3 |
1 2
|
opth2 |
|- ( <. x , y >. = <. B , C >. <-> ( x = B /\ y = C ) ) |
4 |
3
|
anbi2i |
|- ( ( A = <. x , y >. /\ <. x , y >. = <. B , C >. ) <-> ( A = <. x , y >. /\ ( x = B /\ y = C ) ) ) |
5 |
|
ancom |
|- ( ( A = <. x , y >. /\ ( x = B /\ y = C ) ) <-> ( ( x = B /\ y = C ) /\ A = <. x , y >. ) ) |
6 |
|
anass |
|- ( ( ( x = B /\ y = C ) /\ A = <. x , y >. ) <-> ( x = B /\ ( y = C /\ A = <. x , y >. ) ) ) |
7 |
4 5 6
|
3bitri |
|- ( ( A = <. x , y >. /\ <. x , y >. = <. B , C >. ) <-> ( x = B /\ ( y = C /\ A = <. x , y >. ) ) ) |
8 |
7
|
exbii |
|- ( E. y ( A = <. x , y >. /\ <. x , y >. = <. B , C >. ) <-> E. y ( x = B /\ ( y = C /\ A = <. x , y >. ) ) ) |
9 |
|
19.42v |
|- ( E. y ( x = B /\ ( y = C /\ A = <. x , y >. ) ) <-> ( x = B /\ E. y ( y = C /\ A = <. x , y >. ) ) ) |
10 |
|
opeq2 |
|- ( y = C -> <. x , y >. = <. x , C >. ) |
11 |
10
|
eqeq2d |
|- ( y = C -> ( A = <. x , y >. <-> A = <. x , C >. ) ) |
12 |
2 11
|
ceqsexv |
|- ( E. y ( y = C /\ A = <. x , y >. ) <-> A = <. x , C >. ) |
13 |
12
|
anbi2i |
|- ( ( x = B /\ E. y ( y = C /\ A = <. x , y >. ) ) <-> ( x = B /\ A = <. x , C >. ) ) |
14 |
8 9 13
|
3bitri |
|- ( E. y ( A = <. x , y >. /\ <. x , y >. = <. B , C >. ) <-> ( x = B /\ A = <. x , C >. ) ) |
15 |
14
|
exbii |
|- ( E. x E. y ( A = <. x , y >. /\ <. x , y >. = <. B , C >. ) <-> E. x ( x = B /\ A = <. x , C >. ) ) |
16 |
|
opeq1 |
|- ( x = B -> <. x , C >. = <. B , C >. ) |
17 |
16
|
eqeq2d |
|- ( x = B -> ( A = <. x , C >. <-> A = <. B , C >. ) ) |
18 |
1 17
|
ceqsexv |
|- ( E. x ( x = B /\ A = <. x , C >. ) <-> A = <. B , C >. ) |
19 |
15 18
|
bitr2i |
|- ( A = <. B , C >. <-> E. x E. y ( A = <. x , y >. /\ <. x , y >. = <. B , C >. ) ) |