Metamath Proof Explorer


Theorem eqvreldisj3

Description: The elements of the quotient set of an equivalence relation are disjoint (cf. qsdisj2 ). (Contributed by Mario Carneiro, 10-Dec-2016) (Revised by Peter Mazsa, 20-Jun-2019) (Revised by Peter Mazsa, 19-Sep-2021)

Ref Expression
Assertion eqvreldisj3
|- ( EqvRel R -> Disj ( `' _E |` ( A /. R ) ) )

Proof

Step Hyp Ref Expression
1 eqvreldisj2
 |-  ( EqvRel R -> ElDisj ( A /. R ) )
2 df-eldisj
 |-  ( ElDisj ( A /. R ) <-> Disj ( `' _E |` ( A /. R ) ) )
3 1 2 sylib
 |-  ( EqvRel R -> Disj ( `' _E |` ( A /. R ) ) )