Metamath Proof Explorer


Theorem eqvreldmqs2

Description: Two ways to express comember equivalence relation on its domain quotient. (Contributed by Peter Mazsa, 30-Dec-2024)

Ref Expression
Assertion eqvreldmqs2
|- ( ( EqvRel ,~ ( `' _E |` A ) /\ ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A ) <-> ( EqvRel ~ A /\ ( U. A /. ~ A ) = A ) )

Proof

Step Hyp Ref Expression
1 df-coels
 |-  ~ A = ,~ ( `' _E |` A )
2 1 eqvreleqi
 |-  ( EqvRel ~ A <-> EqvRel ,~ ( `' _E |` A ) )
3 2 bicomi
 |-  ( EqvRel ,~ ( `' _E |` A ) <-> EqvRel ~ A )
4 dmqs1cosscnvepreseq
 |-  ( ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A <-> ( U. A /. ~ A ) = A )
5 3 4 anbi12i
 |-  ( ( EqvRel ,~ ( `' _E |` A ) /\ ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A ) <-> ( EqvRel ~ A /\ ( U. A /. ~ A ) = A ) )