Step |
Hyp |
Ref |
Expression |
1 |
|
eqvreldisj3 |
|- ( EqvRel R -> Disj ( `' _E |` ( B /. R ) ) ) |
2 |
1
|
adantr |
|- ( ( EqvRel R /\ ( B /. R ) = A ) -> Disj ( `' _E |` ( B /. R ) ) ) |
3 |
|
reseq2 |
|- ( ( B /. R ) = A -> ( `' _E |` ( B /. R ) ) = ( `' _E |` A ) ) |
4 |
3
|
disjeqd |
|- ( ( B /. R ) = A -> ( Disj ( `' _E |` ( B /. R ) ) <-> Disj ( `' _E |` A ) ) ) |
5 |
4
|
adantl |
|- ( ( EqvRel R /\ ( B /. R ) = A ) -> ( Disj ( `' _E |` ( B /. R ) ) <-> Disj ( `' _E |` A ) ) ) |
6 |
2 5
|
mpbid |
|- ( ( EqvRel R /\ ( B /. R ) = A ) -> Disj ( `' _E |` A ) ) |