Step |
Hyp |
Ref |
Expression |
1 |
|
s3cl |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> <" A B C "> e. Word V ) |
2 |
|
eqwrd |
|- ( ( W e. Word V /\ <" A B C "> e. Word V ) -> ( W = <" A B C "> <-> ( ( # ` W ) = ( # ` <" A B C "> ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( <" A B C "> ` i ) ) ) ) |
3 |
1 2
|
sylan2 |
|- ( ( W e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( W = <" A B C "> <-> ( ( # ` W ) = ( # ` <" A B C "> ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( <" A B C "> ` i ) ) ) ) |
4 |
|
s3len |
|- ( # ` <" A B C "> ) = 3 |
5 |
4
|
eqeq2i |
|- ( ( # ` W ) = ( # ` <" A B C "> ) <-> ( # ` W ) = 3 ) |
6 |
5
|
a1i |
|- ( ( W e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( # ` W ) = ( # ` <" A B C "> ) <-> ( # ` W ) = 3 ) ) |
7 |
6
|
anbi1d |
|- ( ( W e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( ( # ` W ) = ( # ` <" A B C "> ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( <" A B C "> ` i ) ) <-> ( ( # ` W ) = 3 /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( <" A B C "> ` i ) ) ) ) |
8 |
|
oveq2 |
|- ( ( # ` W ) = 3 -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ 3 ) ) |
9 |
|
fzo0to3tp |
|- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
10 |
8 9
|
eqtrdi |
|- ( ( # ` W ) = 3 -> ( 0 ..^ ( # ` W ) ) = { 0 , 1 , 2 } ) |
11 |
10
|
raleqdv |
|- ( ( # ` W ) = 3 -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( <" A B C "> ` i ) <-> A. i e. { 0 , 1 , 2 } ( W ` i ) = ( <" A B C "> ` i ) ) ) |
12 |
|
fveq2 |
|- ( i = 0 -> ( W ` i ) = ( W ` 0 ) ) |
13 |
|
fveq2 |
|- ( i = 0 -> ( <" A B C "> ` i ) = ( <" A B C "> ` 0 ) ) |
14 |
12 13
|
eqeq12d |
|- ( i = 0 -> ( ( W ` i ) = ( <" A B C "> ` i ) <-> ( W ` 0 ) = ( <" A B C "> ` 0 ) ) ) |
15 |
|
s3fv0 |
|- ( A e. V -> ( <" A B C "> ` 0 ) = A ) |
16 |
15
|
3ad2ant1 |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( <" A B C "> ` 0 ) = A ) |
17 |
16
|
eqeq2d |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( ( W ` 0 ) = ( <" A B C "> ` 0 ) <-> ( W ` 0 ) = A ) ) |
18 |
14 17
|
sylan9bbr |
|- ( ( ( A e. V /\ B e. V /\ C e. V ) /\ i = 0 ) -> ( ( W ` i ) = ( <" A B C "> ` i ) <-> ( W ` 0 ) = A ) ) |
19 |
|
fveq2 |
|- ( i = 1 -> ( W ` i ) = ( W ` 1 ) ) |
20 |
|
fveq2 |
|- ( i = 1 -> ( <" A B C "> ` i ) = ( <" A B C "> ` 1 ) ) |
21 |
19 20
|
eqeq12d |
|- ( i = 1 -> ( ( W ` i ) = ( <" A B C "> ` i ) <-> ( W ` 1 ) = ( <" A B C "> ` 1 ) ) ) |
22 |
|
s3fv1 |
|- ( B e. V -> ( <" A B C "> ` 1 ) = B ) |
23 |
22
|
3ad2ant2 |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( <" A B C "> ` 1 ) = B ) |
24 |
23
|
eqeq2d |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( ( W ` 1 ) = ( <" A B C "> ` 1 ) <-> ( W ` 1 ) = B ) ) |
25 |
21 24
|
sylan9bbr |
|- ( ( ( A e. V /\ B e. V /\ C e. V ) /\ i = 1 ) -> ( ( W ` i ) = ( <" A B C "> ` i ) <-> ( W ` 1 ) = B ) ) |
26 |
|
fveq2 |
|- ( i = 2 -> ( W ` i ) = ( W ` 2 ) ) |
27 |
|
fveq2 |
|- ( i = 2 -> ( <" A B C "> ` i ) = ( <" A B C "> ` 2 ) ) |
28 |
26 27
|
eqeq12d |
|- ( i = 2 -> ( ( W ` i ) = ( <" A B C "> ` i ) <-> ( W ` 2 ) = ( <" A B C "> ` 2 ) ) ) |
29 |
|
s3fv2 |
|- ( C e. V -> ( <" A B C "> ` 2 ) = C ) |
30 |
29
|
3ad2ant3 |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( <" A B C "> ` 2 ) = C ) |
31 |
30
|
eqeq2d |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( ( W ` 2 ) = ( <" A B C "> ` 2 ) <-> ( W ` 2 ) = C ) ) |
32 |
28 31
|
sylan9bbr |
|- ( ( ( A e. V /\ B e. V /\ C e. V ) /\ i = 2 ) -> ( ( W ` i ) = ( <" A B C "> ` i ) <-> ( W ` 2 ) = C ) ) |
33 |
|
0zd |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> 0 e. ZZ ) |
34 |
|
1zzd |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> 1 e. ZZ ) |
35 |
|
2z |
|- 2 e. ZZ |
36 |
35
|
a1i |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> 2 e. ZZ ) |
37 |
18 25 32 33 34 36
|
raltpd |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( A. i e. { 0 , 1 , 2 } ( W ` i ) = ( <" A B C "> ` i ) <-> ( ( W ` 0 ) = A /\ ( W ` 1 ) = B /\ ( W ` 2 ) = C ) ) ) |
38 |
37
|
adantl |
|- ( ( W e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A. i e. { 0 , 1 , 2 } ( W ` i ) = ( <" A B C "> ` i ) <-> ( ( W ` 0 ) = A /\ ( W ` 1 ) = B /\ ( W ` 2 ) = C ) ) ) |
39 |
11 38
|
sylan9bbr |
|- ( ( ( W e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) /\ ( # ` W ) = 3 ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( <" A B C "> ` i ) <-> ( ( W ` 0 ) = A /\ ( W ` 1 ) = B /\ ( W ` 2 ) = C ) ) ) |
40 |
39
|
pm5.32da |
|- ( ( W e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( ( # ` W ) = 3 /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( <" A B C "> ` i ) ) <-> ( ( # ` W ) = 3 /\ ( ( W ` 0 ) = A /\ ( W ` 1 ) = B /\ ( W ` 2 ) = C ) ) ) ) |
41 |
3 7 40
|
3bitrd |
|- ( ( W e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( W = <" A B C "> <-> ( ( # ` W ) = 3 /\ ( ( W ` 0 ) = A /\ ( W ` 1 ) = B /\ ( W ` 2 ) = C ) ) ) ) |