Metamath Proof Explorer


Theorem ercl

Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypotheses ersym.1
|- ( ph -> R Er X )
ersym.2
|- ( ph -> A R B )
Assertion ercl
|- ( ph -> A e. X )

Proof

Step Hyp Ref Expression
1 ersym.1
 |-  ( ph -> R Er X )
2 ersym.2
 |-  ( ph -> A R B )
3 errel
 |-  ( R Er X -> Rel R )
4 1 3 syl
 |-  ( ph -> Rel R )
5 releldm
 |-  ( ( Rel R /\ A R B ) -> A e. dom R )
6 4 2 5 syl2anc
 |-  ( ph -> A e. dom R )
7 erdm
 |-  ( R Er X -> dom R = X )
8 1 7 syl
 |-  ( ph -> dom R = X )
9 6 8 eleqtrd
 |-  ( ph -> A e. X )