Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ersym.1 | |- ( ph -> R Er X ) |
|
| ersym.2 | |- ( ph -> A R B ) |
||
| Assertion | ercl | |- ( ph -> A e. X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ersym.1 | |- ( ph -> R Er X ) |
|
| 2 | ersym.2 | |- ( ph -> A R B ) |
|
| 3 | errel | |- ( R Er X -> Rel R ) |
|
| 4 | 1 3 | syl | |- ( ph -> Rel R ) |
| 5 | releldm | |- ( ( Rel R /\ A R B ) -> A e. dom R ) |
|
| 6 | 4 2 5 | syl2anc | |- ( ph -> A e. dom R ) |
| 7 | erdm | |- ( R Er X -> dom R = X ) |
|
| 8 | 1 7 | syl | |- ( ph -> dom R = X ) |
| 9 | 6 8 | eleqtrd | |- ( ph -> A e. X ) |