Description: .~ is an equivalence relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 10-Apr-2018) (Revised by AV, 30-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | erclwwlk.r | |- .~ = { <. u , w >. | ( u e. ( ClWWalks ` G ) /\ w e. ( ClWWalks ` G ) /\ E. n e. ( 0 ... ( # ` w ) ) u = ( w cyclShift n ) ) } |
|
Assertion | erclwwlk | |- .~ Er ( ClWWalks ` G ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erclwwlk.r | |- .~ = { <. u , w >. | ( u e. ( ClWWalks ` G ) /\ w e. ( ClWWalks ` G ) /\ E. n e. ( 0 ... ( # ` w ) ) u = ( w cyclShift n ) ) } |
|
2 | 1 | erclwwlkrel | |- Rel .~ |
3 | 1 | erclwwlksym | |- ( x .~ y -> y .~ x ) |
4 | 1 | erclwwlktr | |- ( ( x .~ y /\ y .~ z ) -> x .~ z ) |
5 | 1 | erclwwlkref | |- ( x e. ( ClWWalks ` G ) <-> x .~ x ) |
6 | 2 3 4 5 | iseri | |- .~ Er ( ClWWalks ` G ) |