Step |
Hyp |
Ref |
Expression |
1 |
|
erclwwlk.r |
|- .~ = { <. u , w >. | ( u e. ( ClWWalks ` G ) /\ w e. ( ClWWalks ` G ) /\ E. n e. ( 0 ... ( # ` w ) ) u = ( w cyclShift n ) ) } |
2 |
1
|
erclwwlkeq |
|- ( ( U e. X /\ W e. Y ) -> ( U .~ W <-> ( U e. ( ClWWalks ` G ) /\ W e. ( ClWWalks ` G ) /\ E. n e. ( 0 ... ( # ` W ) ) U = ( W cyclShift n ) ) ) ) |
3 |
|
fveq2 |
|- ( U = ( W cyclShift n ) -> ( # ` U ) = ( # ` ( W cyclShift n ) ) ) |
4 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
5 |
4
|
clwwlkbp |
|- ( W e. ( ClWWalks ` G ) -> ( G e. _V /\ W e. Word ( Vtx ` G ) /\ W =/= (/) ) ) |
6 |
5
|
simp2d |
|- ( W e. ( ClWWalks ` G ) -> W e. Word ( Vtx ` G ) ) |
7 |
6
|
ad2antlr |
|- ( ( ( U e. ( ClWWalks ` G ) /\ W e. ( ClWWalks ` G ) ) /\ ( U e. X /\ W e. Y ) ) -> W e. Word ( Vtx ` G ) ) |
8 |
|
elfzelz |
|- ( n e. ( 0 ... ( # ` W ) ) -> n e. ZZ ) |
9 |
|
cshwlen |
|- ( ( W e. Word ( Vtx ` G ) /\ n e. ZZ ) -> ( # ` ( W cyclShift n ) ) = ( # ` W ) ) |
10 |
7 8 9
|
syl2an |
|- ( ( ( ( U e. ( ClWWalks ` G ) /\ W e. ( ClWWalks ` G ) ) /\ ( U e. X /\ W e. Y ) ) /\ n e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W cyclShift n ) ) = ( # ` W ) ) |
11 |
3 10
|
sylan9eqr |
|- ( ( ( ( ( U e. ( ClWWalks ` G ) /\ W e. ( ClWWalks ` G ) ) /\ ( U e. X /\ W e. Y ) ) /\ n e. ( 0 ... ( # ` W ) ) ) /\ U = ( W cyclShift n ) ) -> ( # ` U ) = ( # ` W ) ) |
12 |
11
|
rexlimdva2 |
|- ( ( ( U e. ( ClWWalks ` G ) /\ W e. ( ClWWalks ` G ) ) /\ ( U e. X /\ W e. Y ) ) -> ( E. n e. ( 0 ... ( # ` W ) ) U = ( W cyclShift n ) -> ( # ` U ) = ( # ` W ) ) ) |
13 |
12
|
ex |
|- ( ( U e. ( ClWWalks ` G ) /\ W e. ( ClWWalks ` G ) ) -> ( ( U e. X /\ W e. Y ) -> ( E. n e. ( 0 ... ( # ` W ) ) U = ( W cyclShift n ) -> ( # ` U ) = ( # ` W ) ) ) ) |
14 |
13
|
com23 |
|- ( ( U e. ( ClWWalks ` G ) /\ W e. ( ClWWalks ` G ) ) -> ( E. n e. ( 0 ... ( # ` W ) ) U = ( W cyclShift n ) -> ( ( U e. X /\ W e. Y ) -> ( # ` U ) = ( # ` W ) ) ) ) |
15 |
14
|
3impia |
|- ( ( U e. ( ClWWalks ` G ) /\ W e. ( ClWWalks ` G ) /\ E. n e. ( 0 ... ( # ` W ) ) U = ( W cyclShift n ) ) -> ( ( U e. X /\ W e. Y ) -> ( # ` U ) = ( # ` W ) ) ) |
16 |
15
|
com12 |
|- ( ( U e. X /\ W e. Y ) -> ( ( U e. ( ClWWalks ` G ) /\ W e. ( ClWWalks ` G ) /\ E. n e. ( 0 ... ( # ` W ) ) U = ( W cyclShift n ) ) -> ( # ` U ) = ( # ` W ) ) ) |
17 |
2 16
|
sylbid |
|- ( ( U e. X /\ W e. Y ) -> ( U .~ W -> ( # ` U ) = ( # ` W ) ) ) |