Description: .~ is an equivalence relation over the set of closed walks (defined as words) with a fixed length. (Contributed by Alexander van der Vekens, 10-Apr-2018) (Revised by AV, 30-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | erclwwlkn.w | |- W = ( N ClWWalksN G ) |
|
| erclwwlkn.r | |- .~ = { <. t , u >. | ( t e. W /\ u e. W /\ E. n e. ( 0 ... N ) t = ( u cyclShift n ) ) } |
||
| Assertion | erclwwlkn | |- .~ Er W |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erclwwlkn.w | |- W = ( N ClWWalksN G ) |
|
| 2 | erclwwlkn.r | |- .~ = { <. t , u >. | ( t e. W /\ u e. W /\ E. n e. ( 0 ... N ) t = ( u cyclShift n ) ) } |
|
| 3 | 1 2 | erclwwlknrel | |- Rel .~ |
| 4 | 1 2 | erclwwlknsym | |- ( x .~ y -> y .~ x ) |
| 5 | 1 2 | erclwwlkntr | |- ( ( x .~ y /\ y .~ z ) -> x .~ z ) |
| 6 | 1 2 | erclwwlknref | |- ( x e. W <-> x .~ x ) |
| 7 | 3 4 5 6 | iseri | |- .~ Er W |