Step |
Hyp |
Ref |
Expression |
1 |
|
erclwwlkn.w |
|- W = ( N ClWWalksN G ) |
2 |
|
erclwwlkn.r |
|- .~ = { <. t , u >. | ( t e. W /\ u e. W /\ E. n e. ( 0 ... N ) t = ( u cyclShift n ) ) } |
3 |
|
eleq1 |
|- ( t = T -> ( t e. W <-> T e. W ) ) |
4 |
3
|
adantr |
|- ( ( t = T /\ u = U ) -> ( t e. W <-> T e. W ) ) |
5 |
|
eleq1 |
|- ( u = U -> ( u e. W <-> U e. W ) ) |
6 |
5
|
adantl |
|- ( ( t = T /\ u = U ) -> ( u e. W <-> U e. W ) ) |
7 |
|
simpl |
|- ( ( t = T /\ u = U ) -> t = T ) |
8 |
|
oveq1 |
|- ( u = U -> ( u cyclShift n ) = ( U cyclShift n ) ) |
9 |
8
|
adantl |
|- ( ( t = T /\ u = U ) -> ( u cyclShift n ) = ( U cyclShift n ) ) |
10 |
7 9
|
eqeq12d |
|- ( ( t = T /\ u = U ) -> ( t = ( u cyclShift n ) <-> T = ( U cyclShift n ) ) ) |
11 |
10
|
rexbidv |
|- ( ( t = T /\ u = U ) -> ( E. n e. ( 0 ... N ) t = ( u cyclShift n ) <-> E. n e. ( 0 ... N ) T = ( U cyclShift n ) ) ) |
12 |
4 6 11
|
3anbi123d |
|- ( ( t = T /\ u = U ) -> ( ( t e. W /\ u e. W /\ E. n e. ( 0 ... N ) t = ( u cyclShift n ) ) <-> ( T e. W /\ U e. W /\ E. n e. ( 0 ... N ) T = ( U cyclShift n ) ) ) ) |
13 |
12 2
|
brabga |
|- ( ( T e. X /\ U e. Y ) -> ( T .~ U <-> ( T e. W /\ U e. W /\ E. n e. ( 0 ... N ) T = ( U cyclShift n ) ) ) ) |