Step |
Hyp |
Ref |
Expression |
1 |
|
erclwwlkn.w |
|- W = ( N ClWWalksN G ) |
2 |
|
erclwwlkn.r |
|- .~ = { <. t , u >. | ( t e. W /\ u e. W /\ E. n e. ( 0 ... N ) t = ( u cyclShift n ) ) } |
3 |
1 2
|
erclwwlkneq |
|- ( ( T e. X /\ U e. Y ) -> ( T .~ U <-> ( T e. W /\ U e. W /\ E. n e. ( 0 ... N ) T = ( U cyclShift n ) ) ) ) |
4 |
|
fveq2 |
|- ( T = ( U cyclShift n ) -> ( # ` T ) = ( # ` ( U cyclShift n ) ) ) |
5 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
6 |
5
|
clwwlknwrd |
|- ( U e. ( N ClWWalksN G ) -> U e. Word ( Vtx ` G ) ) |
7 |
6 1
|
eleq2s |
|- ( U e. W -> U e. Word ( Vtx ` G ) ) |
8 |
7
|
adantl |
|- ( ( T e. W /\ U e. W ) -> U e. Word ( Vtx ` G ) ) |
9 |
|
elfzelz |
|- ( n e. ( 0 ... N ) -> n e. ZZ ) |
10 |
|
cshwlen |
|- ( ( U e. Word ( Vtx ` G ) /\ n e. ZZ ) -> ( # ` ( U cyclShift n ) ) = ( # ` U ) ) |
11 |
8 9 10
|
syl2an |
|- ( ( ( T e. W /\ U e. W ) /\ n e. ( 0 ... N ) ) -> ( # ` ( U cyclShift n ) ) = ( # ` U ) ) |
12 |
4 11
|
sylan9eqr |
|- ( ( ( ( T e. W /\ U e. W ) /\ n e. ( 0 ... N ) ) /\ T = ( U cyclShift n ) ) -> ( # ` T ) = ( # ` U ) ) |
13 |
12
|
rexlimdva2 |
|- ( ( T e. W /\ U e. W ) -> ( E. n e. ( 0 ... N ) T = ( U cyclShift n ) -> ( # ` T ) = ( # ` U ) ) ) |
14 |
13
|
3impia |
|- ( ( T e. W /\ U e. W /\ E. n e. ( 0 ... N ) T = ( U cyclShift n ) ) -> ( # ` T ) = ( # ` U ) ) |
15 |
3 14
|
syl6bi |
|- ( ( T e. X /\ U e. Y ) -> ( T .~ U -> ( # ` T ) = ( # ` U ) ) ) |