Description: .~ is a relation. (Contributed by Alexander van der Vekens, 25-Mar-2018) (Revised by AV, 29-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | erclwwlk.r | |- .~ = { <. u , w >. | ( u e. ( ClWWalks ` G ) /\ w e. ( ClWWalks ` G ) /\ E. n e. ( 0 ... ( # ` w ) ) u = ( w cyclShift n ) ) } |
|
Assertion | erclwwlkrel | |- Rel .~ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erclwwlk.r | |- .~ = { <. u , w >. | ( u e. ( ClWWalks ` G ) /\ w e. ( ClWWalks ` G ) /\ E. n e. ( 0 ... ( # ` w ) ) u = ( w cyclShift n ) ) } |
|
2 | 1 | relopabi | |- Rel .~ |