Step |
Hyp |
Ref |
Expression |
1 |
|
errel |
|- ( R Er A -> Rel R ) |
2 |
|
relcnv |
|- Rel `' R |
3 |
|
id |
|- ( R Er A -> R Er A ) |
4 |
3
|
ersymb |
|- ( R Er A -> ( y R x <-> x R y ) ) |
5 |
|
vex |
|- x e. _V |
6 |
|
vex |
|- y e. _V |
7 |
5 6
|
brcnv |
|- ( x `' R y <-> y R x ) |
8 |
|
df-br |
|- ( x `' R y <-> <. x , y >. e. `' R ) |
9 |
7 8
|
bitr3i |
|- ( y R x <-> <. x , y >. e. `' R ) |
10 |
|
df-br |
|- ( x R y <-> <. x , y >. e. R ) |
11 |
4 9 10
|
3bitr3g |
|- ( R Er A -> ( <. x , y >. e. `' R <-> <. x , y >. e. R ) ) |
12 |
11
|
eqrelrdv2 |
|- ( ( ( Rel `' R /\ Rel R ) /\ R Er A ) -> `' R = R ) |
13 |
2 12
|
mpanl1 |
|- ( ( Rel R /\ R Er A ) -> `' R = R ) |
14 |
1 13
|
mpancom |
|- ( R Er A -> `' R = R ) |