Description: Lemma for ercpbl . (Contributed by Mario Carneiro, 24-Feb-2015) (Revised by AV, 12-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ercpbl.r | |- ( ph -> .~ Er V ) | |
| ercpbl.v | |- ( ph -> V e. W ) | ||
| ercpbl.f | |- F = ( x e. V |-> [ x ] .~ ) | ||
| ercpbllem.1 | |- ( ph -> A e. V ) | ||
| Assertion | ercpbllem | |- ( ph -> ( ( F ` A ) = ( F ` B ) <-> A .~ B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ercpbl.r | |- ( ph -> .~ Er V ) | |
| 2 | ercpbl.v | |- ( ph -> V e. W ) | |
| 3 | ercpbl.f | |- F = ( x e. V |-> [ x ] .~ ) | |
| 4 | ercpbllem.1 | |- ( ph -> A e. V ) | |
| 5 | 1 2 3 | divsfval | |- ( ph -> ( F ` A ) = [ A ] .~ ) | 
| 6 | 1 2 3 | divsfval | |- ( ph -> ( F ` B ) = [ B ] .~ ) | 
| 7 | 5 6 | eqeq12d | |- ( ph -> ( ( F ` A ) = ( F ` B ) <-> [ A ] .~ = [ B ] .~ ) ) | 
| 8 | 1 4 | erth | |- ( ph -> ( A .~ B <-> [ A ] .~ = [ B ] .~ ) ) | 
| 9 | 7 8 | bitr4d | |- ( ph -> ( ( F ` A ) = ( F ` B ) <-> A .~ B ) ) |