| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neq0 |  |-  ( -. ( [ A ] R i^i [ B ] R ) = (/) <-> E. x x e. ( [ A ] R i^i [ B ] R ) ) | 
						
							| 2 |  | simpl |  |-  ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> R Er X ) | 
						
							| 3 |  | elinel1 |  |-  ( x e. ( [ A ] R i^i [ B ] R ) -> x e. [ A ] R ) | 
						
							| 4 | 3 | adantl |  |-  ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> x e. [ A ] R ) | 
						
							| 5 |  | vex |  |-  x e. _V | 
						
							| 6 |  | ecexr |  |-  ( x e. [ A ] R -> A e. _V ) | 
						
							| 7 | 4 6 | syl |  |-  ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> A e. _V ) | 
						
							| 8 |  | elecg |  |-  ( ( x e. _V /\ A e. _V ) -> ( x e. [ A ] R <-> A R x ) ) | 
						
							| 9 | 5 7 8 | sylancr |  |-  ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> ( x e. [ A ] R <-> A R x ) ) | 
						
							| 10 | 4 9 | mpbid |  |-  ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> A R x ) | 
						
							| 11 |  | elinel2 |  |-  ( x e. ( [ A ] R i^i [ B ] R ) -> x e. [ B ] R ) | 
						
							| 12 | 11 | adantl |  |-  ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> x e. [ B ] R ) | 
						
							| 13 |  | ecexr |  |-  ( x e. [ B ] R -> B e. _V ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> B e. _V ) | 
						
							| 15 |  | elecg |  |-  ( ( x e. _V /\ B e. _V ) -> ( x e. [ B ] R <-> B R x ) ) | 
						
							| 16 | 5 14 15 | sylancr |  |-  ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> ( x e. [ B ] R <-> B R x ) ) | 
						
							| 17 | 12 16 | mpbid |  |-  ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> B R x ) | 
						
							| 18 | 2 10 17 | ertr4d |  |-  ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> A R B ) | 
						
							| 19 | 2 18 | erthi |  |-  ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> [ A ] R = [ B ] R ) | 
						
							| 20 | 19 | ex |  |-  ( R Er X -> ( x e. ( [ A ] R i^i [ B ] R ) -> [ A ] R = [ B ] R ) ) | 
						
							| 21 | 20 | exlimdv |  |-  ( R Er X -> ( E. x x e. ( [ A ] R i^i [ B ] R ) -> [ A ] R = [ B ] R ) ) | 
						
							| 22 | 1 21 | biimtrid |  |-  ( R Er X -> ( -. ( [ A ] R i^i [ B ] R ) = (/) -> [ A ] R = [ B ] R ) ) | 
						
							| 23 | 22 | orrd |  |-  ( R Er X -> ( ( [ A ] R i^i [ B ] R ) = (/) \/ [ A ] R = [ B ] R ) ) | 
						
							| 24 | 23 | orcomd |  |-  ( R Er X -> ( [ A ] R = [ B ] R \/ ( [ A ] R i^i [ B ] R ) = (/) ) ) |