Step |
Hyp |
Ref |
Expression |
1 |
|
neq0 |
|- ( -. ( [ A ] R i^i [ B ] R ) = (/) <-> E. x x e. ( [ A ] R i^i [ B ] R ) ) |
2 |
|
simpl |
|- ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> R Er X ) |
3 |
|
elinel1 |
|- ( x e. ( [ A ] R i^i [ B ] R ) -> x e. [ A ] R ) |
4 |
3
|
adantl |
|- ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> x e. [ A ] R ) |
5 |
|
vex |
|- x e. _V |
6 |
|
ecexr |
|- ( x e. [ A ] R -> A e. _V ) |
7 |
4 6
|
syl |
|- ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> A e. _V ) |
8 |
|
elecg |
|- ( ( x e. _V /\ A e. _V ) -> ( x e. [ A ] R <-> A R x ) ) |
9 |
5 7 8
|
sylancr |
|- ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> ( x e. [ A ] R <-> A R x ) ) |
10 |
4 9
|
mpbid |
|- ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> A R x ) |
11 |
|
elinel2 |
|- ( x e. ( [ A ] R i^i [ B ] R ) -> x e. [ B ] R ) |
12 |
11
|
adantl |
|- ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> x e. [ B ] R ) |
13 |
|
ecexr |
|- ( x e. [ B ] R -> B e. _V ) |
14 |
12 13
|
syl |
|- ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> B e. _V ) |
15 |
|
elecg |
|- ( ( x e. _V /\ B e. _V ) -> ( x e. [ B ] R <-> B R x ) ) |
16 |
5 14 15
|
sylancr |
|- ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> ( x e. [ B ] R <-> B R x ) ) |
17 |
12 16
|
mpbid |
|- ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> B R x ) |
18 |
2 10 17
|
ertr4d |
|- ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> A R B ) |
19 |
2 18
|
erthi |
|- ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> [ A ] R = [ B ] R ) |
20 |
19
|
ex |
|- ( R Er X -> ( x e. ( [ A ] R i^i [ B ] R ) -> [ A ] R = [ B ] R ) ) |
21 |
20
|
exlimdv |
|- ( R Er X -> ( E. x x e. ( [ A ] R i^i [ B ] R ) -> [ A ] R = [ B ] R ) ) |
22 |
1 21
|
syl5bi |
|- ( R Er X -> ( -. ( [ A ] R i^i [ B ] R ) = (/) -> [ A ] R = [ B ] R ) ) |
23 |
22
|
orrd |
|- ( R Er X -> ( ( [ A ] R i^i [ B ] R ) = (/) \/ [ A ] R = [ B ] R ) ) |
24 |
23
|
orcomd |
|- ( R Er X -> ( [ A ] R = [ B ] R \/ ( [ A ] R i^i [ B ] R ) = (/) ) ) |