| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erdsze2.r |
|- ( ph -> R e. NN ) |
| 2 |
|
erdsze2.s |
|- ( ph -> S e. NN ) |
| 3 |
|
erdsze2.f |
|- ( ph -> F : A -1-1-> RR ) |
| 4 |
|
erdsze2.a |
|- ( ph -> A C_ RR ) |
| 5 |
|
erdsze2.l |
|- ( ph -> ( ( R - 1 ) x. ( S - 1 ) ) < ( # ` A ) ) |
| 6 |
|
eqid |
|- ( ( R - 1 ) x. ( S - 1 ) ) = ( ( R - 1 ) x. ( S - 1 ) ) |
| 7 |
1 2 3 4 6 5
|
erdsze2lem1 |
|- ( ph -> E. f ( f : ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) , ran f ) ) ) |
| 8 |
1
|
adantr |
|- ( ( ph /\ ( f : ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) , ran f ) ) ) -> R e. NN ) |
| 9 |
2
|
adantr |
|- ( ( ph /\ ( f : ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) , ran f ) ) ) -> S e. NN ) |
| 10 |
3
|
adantr |
|- ( ( ph /\ ( f : ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) , ran f ) ) ) -> F : A -1-1-> RR ) |
| 11 |
4
|
adantr |
|- ( ( ph /\ ( f : ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) , ran f ) ) ) -> A C_ RR ) |
| 12 |
5
|
adantr |
|- ( ( ph /\ ( f : ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) , ran f ) ) ) -> ( ( R - 1 ) x. ( S - 1 ) ) < ( # ` A ) ) |
| 13 |
|
simprl |
|- ( ( ph /\ ( f : ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) , ran f ) ) ) -> f : ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) -1-1-> A ) |
| 14 |
|
simprr |
|- ( ( ph /\ ( f : ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) , ran f ) ) ) -> f Isom < , < ( ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) , ran f ) ) |
| 15 |
8 9 10 11 6 12 13 14
|
erdsze2lem2 |
|- ( ( ph /\ ( f : ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) -1-1-> A /\ f Isom < , < ( ( 1 ... ( ( ( R - 1 ) x. ( S - 1 ) ) + 1 ) ) , ran f ) ) ) -> E. s e. ~P A ( ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , < ( s , ( F " s ) ) ) \/ ( S <_ ( # ` s ) /\ ( F |` s ) Isom < , `' < ( s , ( F " s ) ) ) ) ) |
| 16 |
7 15
|
exlimddv |
|- ( ph -> E. s e. ~P A ( ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , < ( s , ( F " s ) ) ) \/ ( S <_ ( # ` s ) /\ ( F |` s ) Isom < , `' < ( s , ( F " s ) ) ) ) ) |