| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							erdsze2.r | 
							 |-  ( ph -> R e. NN )  | 
						
						
							| 2 | 
							
								
							 | 
							erdsze2.s | 
							 |-  ( ph -> S e. NN )  | 
						
						
							| 3 | 
							
								
							 | 
							erdsze2.f | 
							 |-  ( ph -> F : A -1-1-> RR )  | 
						
						
							| 4 | 
							
								
							 | 
							erdsze2.a | 
							 |-  ( ph -> A C_ RR )  | 
						
						
							| 5 | 
							
								
							 | 
							erdsze2lem.n | 
							 |-  N = ( ( R - 1 ) x. ( S - 1 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							erdsze2lem.l | 
							 |-  ( ph -> N < ( # ` A ) )  | 
						
						
							| 7 | 
							
								
							 | 
							erdsze2lem.g | 
							 |-  ( ph -> G : ( 1 ... ( N + 1 ) ) -1-1-> A )  | 
						
						
							| 8 | 
							
								
							 | 
							erdsze2lem.i | 
							 |-  ( ph -> G Isom < , < ( ( 1 ... ( N + 1 ) ) , ran G ) )  | 
						
						
							| 9 | 
							
								
							 | 
							nnm1nn0 | 
							 |-  ( R e. NN -> ( R - 1 ) e. NN0 )  | 
						
						
							| 10 | 
							
								1 9
							 | 
							syl | 
							 |-  ( ph -> ( R - 1 ) e. NN0 )  | 
						
						
							| 11 | 
							
								
							 | 
							nnm1nn0 | 
							 |-  ( S e. NN -> ( S - 1 ) e. NN0 )  | 
						
						
							| 12 | 
							
								2 11
							 | 
							syl | 
							 |-  ( ph -> ( S - 1 ) e. NN0 )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							nn0mulcld | 
							 |-  ( ph -> ( ( R - 1 ) x. ( S - 1 ) ) e. NN0 )  | 
						
						
							| 14 | 
							
								5 13
							 | 
							eqeltrid | 
							 |-  ( ph -> N e. NN0 )  | 
						
						
							| 15 | 
							
								
							 | 
							nn0p1nn | 
							 |-  ( N e. NN0 -> ( N + 1 ) e. NN )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							syl | 
							 |-  ( ph -> ( N + 1 ) e. NN )  | 
						
						
							| 17 | 
							
								
							 | 
							f1co | 
							 |-  ( ( F : A -1-1-> RR /\ G : ( 1 ... ( N + 1 ) ) -1-1-> A ) -> ( F o. G ) : ( 1 ... ( N + 1 ) ) -1-1-> RR )  | 
						
						
							| 18 | 
							
								3 7 17
							 | 
							syl2anc | 
							 |-  ( ph -> ( F o. G ) : ( 1 ... ( N + 1 ) ) -1-1-> RR )  | 
						
						
							| 19 | 
							
								14
							 | 
							nn0red | 
							 |-  ( ph -> N e. RR )  | 
						
						
							| 20 | 
							
								19
							 | 
							ltp1d | 
							 |-  ( ph -> N < ( N + 1 ) )  | 
						
						
							| 21 | 
							
								5 20
							 | 
							eqbrtrrid | 
							 |-  ( ph -> ( ( R - 1 ) x. ( S - 1 ) ) < ( N + 1 ) )  | 
						
						
							| 22 | 
							
								16 18 1 2 21
							 | 
							erdsze | 
							 |-  ( ph -> E. t e. ~P ( 1 ... ( N + 1 ) ) ( ( R <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) ) \/ ( S <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							velpw | 
							 |-  ( t e. ~P ( 1 ... ( N + 1 ) ) <-> t C_ ( 1 ... ( N + 1 ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							imassrn | 
							 |-  ( G " t ) C_ ran G  | 
						
						
							| 25 | 
							
								
							 | 
							f1f | 
							 |-  ( G : ( 1 ... ( N + 1 ) ) -1-1-> A -> G : ( 1 ... ( N + 1 ) ) --> A )  | 
						
						
							| 26 | 
							
								7 25
							 | 
							syl | 
							 |-  ( ph -> G : ( 1 ... ( N + 1 ) ) --> A )  | 
						
						
							| 27 | 
							
								26
							 | 
							frnd | 
							 |-  ( ph -> ran G C_ A )  | 
						
						
							| 28 | 
							
								24 27
							 | 
							sstrid | 
							 |-  ( ph -> ( G " t ) C_ A )  | 
						
						
							| 29 | 
							
								
							 | 
							reex | 
							 |-  RR e. _V  | 
						
						
							| 30 | 
							
								
							 | 
							ssexg | 
							 |-  ( ( A C_ RR /\ RR e. _V ) -> A e. _V )  | 
						
						
							| 31 | 
							
								4 29 30
							 | 
							sylancl | 
							 |-  ( ph -> A e. _V )  | 
						
						
							| 32 | 
							
								
							 | 
							elpw2g | 
							 |-  ( A e. _V -> ( ( G " t ) e. ~P A <-> ( G " t ) C_ A ) )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							syl | 
							 |-  ( ph -> ( ( G " t ) e. ~P A <-> ( G " t ) C_ A ) )  | 
						
						
							| 34 | 
							
								28 33
							 | 
							mpbird | 
							 |-  ( ph -> ( G " t ) e. ~P A )  | 
						
						
							| 35 | 
							
								34
							 | 
							adantr | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( G " t ) e. ~P A )  | 
						
						
							| 36 | 
							
								
							 | 
							vex | 
							 |-  t e. _V  | 
						
						
							| 37 | 
							
								36
							 | 
							f1imaen | 
							 |-  ( ( G : ( 1 ... ( N + 1 ) ) -1-1-> A /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( G " t ) ~~ t )  | 
						
						
							| 38 | 
							
								7 37
							 | 
							sylan | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( G " t ) ~~ t )  | 
						
						
							| 39 | 
							
								
							 | 
							fzfid | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( 1 ... ( N + 1 ) ) e. Fin )  | 
						
						
							| 40 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> t C_ ( 1 ... ( N + 1 ) ) )  | 
						
						
							| 41 | 
							
								
							 | 
							ssfi | 
							 |-  ( ( ( 1 ... ( N + 1 ) ) e. Fin /\ t C_ ( 1 ... ( N + 1 ) ) ) -> t e. Fin )  | 
						
						
							| 42 | 
							
								39 40 41
							 | 
							syl2anc | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> t e. Fin )  | 
						
						
							| 43 | 
							
								
							 | 
							enfii | 
							 |-  ( ( t e. Fin /\ ( G " t ) ~~ t ) -> ( G " t ) e. Fin )  | 
						
						
							| 44 | 
							
								42 38 43
							 | 
							syl2anc | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( G " t ) e. Fin )  | 
						
						
							| 45 | 
							
								
							 | 
							hashen | 
							 |-  ( ( ( G " t ) e. Fin /\ t e. Fin ) -> ( ( # ` ( G " t ) ) = ( # ` t ) <-> ( G " t ) ~~ t ) )  | 
						
						
							| 46 | 
							
								44 42 45
							 | 
							syl2anc | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( # ` ( G " t ) ) = ( # ` t ) <-> ( G " t ) ~~ t ) )  | 
						
						
							| 47 | 
							
								38 46
							 | 
							mpbird | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( # ` ( G " t ) ) = ( # ` t ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							breq2d | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( R <_ ( # ` ( G " t ) ) <-> R <_ ( # ` t ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							biimprd | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( R <_ ( # ` t ) -> R <_ ( # ` ( G " t ) ) ) )  | 
						
						
							| 50 | 
							
								8
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) /\ ( x e. t /\ y e. t ) ) -> G Isom < , < ( ( 1 ... ( N + 1 ) ) , ran G ) )  | 
						
						
							| 51 | 
							
								40
							 | 
							adantr | 
							 |-  ( ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) /\ ( x e. t /\ y e. t ) ) -> t C_ ( 1 ... ( N + 1 ) ) )  | 
						
						
							| 52 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) /\ ( x e. t /\ y e. t ) ) -> x e. t )  | 
						
						
							| 53 | 
							
								51 52
							 | 
							sseldd | 
							 |-  ( ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) /\ ( x e. t /\ y e. t ) ) -> x e. ( 1 ... ( N + 1 ) ) )  | 
						
						
							| 54 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) /\ ( x e. t /\ y e. t ) ) -> y e. t )  | 
						
						
							| 55 | 
							
								51 54
							 | 
							sseldd | 
							 |-  ( ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) /\ ( x e. t /\ y e. t ) ) -> y e. ( 1 ... ( N + 1 ) ) )  | 
						
						
							| 56 | 
							
								
							 | 
							isorel | 
							 |-  ( ( G Isom < , < ( ( 1 ... ( N + 1 ) ) , ran G ) /\ ( x e. ( 1 ... ( N + 1 ) ) /\ y e. ( 1 ... ( N + 1 ) ) ) ) -> ( x < y <-> ( G ` x ) < ( G ` y ) ) )  | 
						
						
							| 57 | 
							
								50 53 55 56
							 | 
							syl12anc | 
							 |-  ( ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) /\ ( x e. t /\ y e. t ) ) -> ( x < y <-> ( G ` x ) < ( G ` y ) ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							biimpd | 
							 |-  ( ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) /\ ( x e. t /\ y e. t ) ) -> ( x < y -> ( G ` x ) < ( G ` y ) ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							ralrimivva | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> A. x e. t A. y e. t ( x < y -> ( G ` x ) < ( G ` y ) ) )  | 
						
						
							| 60 | 
							
								
							 | 
							elfznn | 
							 |-  ( t e. ( 1 ... ( N + 1 ) ) -> t e. NN )  | 
						
						
							| 61 | 
							
								60
							 | 
							nnred | 
							 |-  ( t e. ( 1 ... ( N + 1 ) ) -> t e. RR )  | 
						
						
							| 62 | 
							
								61
							 | 
							ssriv | 
							 |-  ( 1 ... ( N + 1 ) ) C_ RR  | 
						
						
							| 63 | 
							
								62
							 | 
							a1i | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( 1 ... ( N + 1 ) ) C_ RR )  | 
						
						
							| 64 | 
							
								
							 | 
							ltso | 
							 |-  < Or RR  | 
						
						
							| 65 | 
							
								
							 | 
							soss | 
							 |-  ( ( 1 ... ( N + 1 ) ) C_ RR -> ( < Or RR -> < Or ( 1 ... ( N + 1 ) ) ) )  | 
						
						
							| 66 | 
							
								63 64 65
							 | 
							mpisyl | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> < Or ( 1 ... ( N + 1 ) ) )  | 
						
						
							| 67 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> A C_ RR )  | 
						
						
							| 68 | 
							
								
							 | 
							soss | 
							 |-  ( A C_ RR -> ( < Or RR -> < Or A ) )  | 
						
						
							| 69 | 
							
								67 64 68
							 | 
							mpisyl | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> < Or A )  | 
						
						
							| 70 | 
							
								26
							 | 
							adantr | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> G : ( 1 ... ( N + 1 ) ) --> A )  | 
						
						
							| 71 | 
							
								
							 | 
							soisores | 
							 |-  ( ( ( < Or ( 1 ... ( N + 1 ) ) /\ < Or A ) /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ t C_ ( 1 ... ( N + 1 ) ) ) ) -> ( ( G |` t ) Isom < , < ( t , ( G " t ) ) <-> A. x e. t A. y e. t ( x < y -> ( G ` x ) < ( G ` y ) ) ) )  | 
						
						
							| 72 | 
							
								66 69 70 40 71
							 | 
							syl22anc | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( G |` t ) Isom < , < ( t , ( G " t ) ) <-> A. x e. t A. y e. t ( x < y -> ( G ` x ) < ( G ` y ) ) ) )  | 
						
						
							| 73 | 
							
								59 72
							 | 
							mpbird | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( G |` t ) Isom < , < ( t , ( G " t ) ) )  | 
						
						
							| 74 | 
							
								
							 | 
							isocnv | 
							 |-  ( ( G |` t ) Isom < , < ( t , ( G " t ) ) -> `' ( G |` t ) Isom < , < ( ( G " t ) , t ) )  | 
						
						
							| 75 | 
							
								73 74
							 | 
							syl | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> `' ( G |` t ) Isom < , < ( ( G " t ) , t ) )  | 
						
						
							| 76 | 
							
								
							 | 
							isotr | 
							 |-  ( ( `' ( G |` t ) Isom < , < ( ( G " t ) , t ) /\ ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) ) -> ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							ex | 
							 |-  ( `' ( G |` t ) Isom < , < ( ( G " t ) , t ) -> ( ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) -> ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) ) )  | 
						
						
							| 78 | 
							
								75 77
							 | 
							syl | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) -> ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) ) )  | 
						
						
							| 79 | 
							
								
							 | 
							resco | 
							 |-  ( ( F o. G ) |` t ) = ( F o. ( G |` t ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							coeq1i | 
							 |-  ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) = ( ( F o. ( G |` t ) ) o. `' ( G |` t ) )  | 
						
						
							| 81 | 
							
								
							 | 
							coass | 
							 |-  ( ( F o. ( G |` t ) ) o. `' ( G |` t ) ) = ( F o. ( ( G |` t ) o. `' ( G |` t ) ) )  | 
						
						
							| 82 | 
							
								80 81
							 | 
							eqtri | 
							 |-  ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) = ( F o. ( ( G |` t ) o. `' ( G |` t ) ) )  | 
						
						
							| 83 | 
							
								
							 | 
							f1ores | 
							 |-  ( ( G : ( 1 ... ( N + 1 ) ) -1-1-> A /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( G |` t ) : t -1-1-onto-> ( G " t ) )  | 
						
						
							| 84 | 
							
								7 83
							 | 
							sylan | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( G |` t ) : t -1-1-onto-> ( G " t ) )  | 
						
						
							| 85 | 
							
								
							 | 
							f1ococnv2 | 
							 |-  ( ( G |` t ) : t -1-1-onto-> ( G " t ) -> ( ( G |` t ) o. `' ( G |` t ) ) = ( _I |` ( G " t ) ) )  | 
						
						
							| 86 | 
							
								84 85
							 | 
							syl | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( G |` t ) o. `' ( G |` t ) ) = ( _I |` ( G " t ) ) )  | 
						
						
							| 87 | 
							
								86
							 | 
							coeq2d | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( F o. ( ( G |` t ) o. `' ( G |` t ) ) ) = ( F o. ( _I |` ( G " t ) ) ) )  | 
						
						
							| 88 | 
							
								
							 | 
							coires1 | 
							 |-  ( F o. ( _I |` ( G " t ) ) ) = ( F |` ( G " t ) )  | 
						
						
							| 89 | 
							
								87 88
							 | 
							eqtrdi | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( F o. ( ( G |` t ) o. `' ( G |` t ) ) ) = ( F |` ( G " t ) ) )  | 
						
						
							| 90 | 
							
								82 89
							 | 
							eqtrid | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) = ( F |` ( G " t ) ) )  | 
						
						
							| 91 | 
							
								
							 | 
							isoeq1 | 
							 |-  ( ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) = ( F |` ( G " t ) ) -> ( ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) ) )  | 
						
						
							| 92 | 
							
								90 91
							 | 
							syl | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) ) )  | 
						
						
							| 93 | 
							
								
							 | 
							imaco | 
							 |-  ( ( F o. G ) " t ) = ( F " ( G " t ) )  | 
						
						
							| 94 | 
							
								
							 | 
							isoeq5 | 
							 |-  ( ( ( F o. G ) " t ) = ( F " ( G " t ) ) -> ( ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) )  | 
						
						
							| 95 | 
							
								93 94
							 | 
							ax-mp | 
							 |-  ( ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) )  | 
						
						
							| 96 | 
							
								92 95
							 | 
							bitrdi | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) )  | 
						
						
							| 97 | 
							
								78 96
							 | 
							sylibd | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) -> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) )  | 
						
						
							| 98 | 
							
								49 97
							 | 
							anim12d | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( R <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) ) -> ( R <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) )  | 
						
						
							| 99 | 
							
								47
							 | 
							breq2d | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( S <_ ( # ` ( G " t ) ) <-> S <_ ( # ` t ) ) )  | 
						
						
							| 100 | 
							
								99
							 | 
							biimprd | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( S <_ ( # ` t ) -> S <_ ( # ` ( G " t ) ) ) )  | 
						
						
							| 101 | 
							
								
							 | 
							isotr | 
							 |-  ( ( `' ( G |` t ) Isom < , < ( ( G " t ) , t ) /\ ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) ) -> ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) )  | 
						
						
							| 102 | 
							
								101
							 | 
							ex | 
							 |-  ( `' ( G |` t ) Isom < , < ( ( G " t ) , t ) -> ( ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) -> ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) ) )  | 
						
						
							| 103 | 
							
								75 102
							 | 
							syl | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) -> ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) ) )  | 
						
						
							| 104 | 
							
								
							 | 
							isoeq1 | 
							 |-  ( ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) = ( F |` ( G " t ) ) -> ( ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) ) )  | 
						
						
							| 105 | 
							
								90 104
							 | 
							syl | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) ) )  | 
						
						
							| 106 | 
							
								
							 | 
							isoeq5 | 
							 |-  ( ( ( F o. G ) " t ) = ( F " ( G " t ) ) -> ( ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) )  | 
						
						
							| 107 | 
							
								93 106
							 | 
							ax-mp | 
							 |-  ( ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) )  | 
						
						
							| 108 | 
							
								105 107
							 | 
							bitrdi | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( F o. G ) |` t ) o. `' ( G |` t ) ) Isom < , `' < ( ( G " t ) , ( ( F o. G ) " t ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) )  | 
						
						
							| 109 | 
							
								103 108
							 | 
							sylibd | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) -> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) )  | 
						
						
							| 110 | 
							
								100 109
							 | 
							anim12d | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( S <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) ) -> ( S <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) )  | 
						
						
							| 111 | 
							
								98 110
							 | 
							orim12d | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( R <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) ) \/ ( S <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) ) ) -> ( ( R <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) \/ ( S <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) ) )  | 
						
						
							| 112 | 
							
								
							 | 
							fveq2 | 
							 |-  ( s = ( G " t ) -> ( # ` s ) = ( # ` ( G " t ) ) )  | 
						
						
							| 113 | 
							
								112
							 | 
							breq2d | 
							 |-  ( s = ( G " t ) -> ( R <_ ( # ` s ) <-> R <_ ( # ` ( G " t ) ) ) )  | 
						
						
							| 114 | 
							
								
							 | 
							reseq2 | 
							 |-  ( s = ( G " t ) -> ( F |` s ) = ( F |` ( G " t ) ) )  | 
						
						
							| 115 | 
							
								
							 | 
							isoeq1 | 
							 |-  ( ( F |` s ) = ( F |` ( G " t ) ) -> ( ( F |` s ) Isom < , < ( s , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , < ( s , ( F " s ) ) ) )  | 
						
						
							| 116 | 
							
								114 115
							 | 
							syl | 
							 |-  ( s = ( G " t ) -> ( ( F |` s ) Isom < , < ( s , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , < ( s , ( F " s ) ) ) )  | 
						
						
							| 117 | 
							
								
							 | 
							isoeq4 | 
							 |-  ( s = ( G " t ) -> ( ( F |` ( G " t ) ) Isom < , < ( s , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " s ) ) ) )  | 
						
						
							| 118 | 
							
								
							 | 
							imaeq2 | 
							 |-  ( s = ( G " t ) -> ( F " s ) = ( F " ( G " t ) ) )  | 
						
						
							| 119 | 
							
								
							 | 
							isoeq5 | 
							 |-  ( ( F " s ) = ( F " ( G " t ) ) -> ( ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) )  | 
						
						
							| 120 | 
							
								118 119
							 | 
							syl | 
							 |-  ( s = ( G " t ) -> ( ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) )  | 
						
						
							| 121 | 
							
								116 117 120
							 | 
							3bitrd | 
							 |-  ( s = ( G " t ) -> ( ( F |` s ) Isom < , < ( s , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) )  | 
						
						
							| 122 | 
							
								113 121
							 | 
							anbi12d | 
							 |-  ( s = ( G " t ) -> ( ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , < ( s , ( F " s ) ) ) <-> ( R <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) )  | 
						
						
							| 123 | 
							
								112
							 | 
							breq2d | 
							 |-  ( s = ( G " t ) -> ( S <_ ( # ` s ) <-> S <_ ( # ` ( G " t ) ) ) )  | 
						
						
							| 124 | 
							
								
							 | 
							isoeq1 | 
							 |-  ( ( F |` s ) = ( F |` ( G " t ) ) -> ( ( F |` s ) Isom < , `' < ( s , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( s , ( F " s ) ) ) )  | 
						
						
							| 125 | 
							
								114 124
							 | 
							syl | 
							 |-  ( s = ( G " t ) -> ( ( F |` s ) Isom < , `' < ( s , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( s , ( F " s ) ) ) )  | 
						
						
							| 126 | 
							
								
							 | 
							isoeq4 | 
							 |-  ( s = ( G " t ) -> ( ( F |` ( G " t ) ) Isom < , `' < ( s , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " s ) ) ) )  | 
						
						
							| 127 | 
							
								
							 | 
							isoeq5 | 
							 |-  ( ( F " s ) = ( F " ( G " t ) ) -> ( ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) )  | 
						
						
							| 128 | 
							
								118 127
							 | 
							syl | 
							 |-  ( s = ( G " t ) -> ( ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) )  | 
						
						
							| 129 | 
							
								125 126 128
							 | 
							3bitrd | 
							 |-  ( s = ( G " t ) -> ( ( F |` s ) Isom < , `' < ( s , ( F " s ) ) <-> ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) )  | 
						
						
							| 130 | 
							
								123 129
							 | 
							anbi12d | 
							 |-  ( s = ( G " t ) -> ( ( S <_ ( # ` s ) /\ ( F |` s ) Isom < , `' < ( s , ( F " s ) ) ) <-> ( S <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) )  | 
						
						
							| 131 | 
							
								122 130
							 | 
							orbi12d | 
							 |-  ( s = ( G " t ) -> ( ( ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , < ( s , ( F " s ) ) ) \/ ( S <_ ( # ` s ) /\ ( F |` s ) Isom < , `' < ( s , ( F " s ) ) ) ) <-> ( ( R <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) \/ ( S <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) ) )  | 
						
						
							| 132 | 
							
								131
							 | 
							rspcev | 
							 |-  ( ( ( G " t ) e. ~P A /\ ( ( R <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , < ( ( G " t ) , ( F " ( G " t ) ) ) ) \/ ( S <_ ( # ` ( G " t ) ) /\ ( F |` ( G " t ) ) Isom < , `' < ( ( G " t ) , ( F " ( G " t ) ) ) ) ) ) -> E. s e. ~P A ( ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , < ( s , ( F " s ) ) ) \/ ( S <_ ( # ` s ) /\ ( F |` s ) Isom < , `' < ( s , ( F " s ) ) ) ) )  | 
						
						
							| 133 | 
							
								35 111 132
							 | 
							syl6an | 
							 |-  ( ( ph /\ t C_ ( 1 ... ( N + 1 ) ) ) -> ( ( ( R <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) ) \/ ( S <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) ) ) -> E. s e. ~P A ( ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , < ( s , ( F " s ) ) ) \/ ( S <_ ( # ` s ) /\ ( F |` s ) Isom < , `' < ( s , ( F " s ) ) ) ) ) )  | 
						
						
							| 134 | 
							
								23 133
							 | 
							sylan2b | 
							 |-  ( ( ph /\ t e. ~P ( 1 ... ( N + 1 ) ) ) -> ( ( ( R <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) ) \/ ( S <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) ) ) -> E. s e. ~P A ( ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , < ( s , ( F " s ) ) ) \/ ( S <_ ( # ` s ) /\ ( F |` s ) Isom < , `' < ( s , ( F " s ) ) ) ) ) )  | 
						
						
							| 135 | 
							
								134
							 | 
							rexlimdva | 
							 |-  ( ph -> ( E. t e. ~P ( 1 ... ( N + 1 ) ) ( ( R <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , < ( t , ( ( F o. G ) " t ) ) ) \/ ( S <_ ( # ` t ) /\ ( ( F o. G ) |` t ) Isom < , `' < ( t , ( ( F o. G ) " t ) ) ) ) -> E. s e. ~P A ( ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , < ( s , ( F " s ) ) ) \/ ( S <_ ( # ` s ) /\ ( F |` s ) Isom < , `' < ( s , ( F " s ) ) ) ) ) )  | 
						
						
							| 136 | 
							
								22 135
							 | 
							mpd | 
							 |-  ( ph -> E. s e. ~P A ( ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , < ( s , ( F " s ) ) ) \/ ( S <_ ( # ` s ) /\ ( F |` s ) Isom < , `' < ( s , ( F " s ) ) ) ) )  |