Metamath Proof Explorer


Theorem erdszelem3

Description: Lemma for erdsze . (Contributed by Mario Carneiro, 22-Jan-2015)

Ref Expression
Hypotheses erdsze.n
|- ( ph -> N e. NN )
erdsze.f
|- ( ph -> F : ( 1 ... N ) -1-1-> RR )
erdszelem.k
|- K = ( x e. ( 1 ... N ) |-> sup ( ( # " { y e. ~P ( 1 ... x ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ x e. y ) } ) , RR , < ) )
Assertion erdszelem3
|- ( A e. ( 1 ... N ) -> ( K ` A ) = sup ( ( # " { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) , RR , < ) )

Proof

Step Hyp Ref Expression
1 erdsze.n
 |-  ( ph -> N e. NN )
2 erdsze.f
 |-  ( ph -> F : ( 1 ... N ) -1-1-> RR )
3 erdszelem.k
 |-  K = ( x e. ( 1 ... N ) |-> sup ( ( # " { y e. ~P ( 1 ... x ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ x e. y ) } ) , RR , < ) )
4 oveq2
 |-  ( x = A -> ( 1 ... x ) = ( 1 ... A ) )
5 4 pweqd
 |-  ( x = A -> ~P ( 1 ... x ) = ~P ( 1 ... A ) )
6 eleq1
 |-  ( x = A -> ( x e. y <-> A e. y ) )
7 6 anbi2d
 |-  ( x = A -> ( ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ x e. y ) <-> ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) ) )
8 5 7 rabeqbidv
 |-  ( x = A -> { y e. ~P ( 1 ... x ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ x e. y ) } = { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } )
9 8 imaeq2d
 |-  ( x = A -> ( # " { y e. ~P ( 1 ... x ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ x e. y ) } ) = ( # " { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) )
10 9 supeq1d
 |-  ( x = A -> sup ( ( # " { y e. ~P ( 1 ... x ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ x e. y ) } ) , RR , < ) = sup ( ( # " { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) , RR , < ) )
11 ltso
 |-  < Or RR
12 11 supex
 |-  sup ( ( # " { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) , RR , < ) e. _V
13 10 3 12 fvmpt
 |-  ( A e. ( 1 ... N ) -> ( K ` A ) = sup ( ( # " { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) , RR , < ) )