Step |
Hyp |
Ref |
Expression |
1 |
|
erdsze.n |
|- ( ph -> N e. NN ) |
2 |
|
erdsze.f |
|- ( ph -> F : ( 1 ... N ) -1-1-> RR ) |
3 |
|
erdszelem.k |
|- K = ( x e. ( 1 ... N ) |-> sup ( ( # " { y e. ~P ( 1 ... x ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ x e. y ) } ) , RR , < ) ) |
4 |
|
oveq2 |
|- ( x = A -> ( 1 ... x ) = ( 1 ... A ) ) |
5 |
4
|
pweqd |
|- ( x = A -> ~P ( 1 ... x ) = ~P ( 1 ... A ) ) |
6 |
|
eleq1 |
|- ( x = A -> ( x e. y <-> A e. y ) ) |
7 |
6
|
anbi2d |
|- ( x = A -> ( ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ x e. y ) <-> ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) ) ) |
8 |
5 7
|
rabeqbidv |
|- ( x = A -> { y e. ~P ( 1 ... x ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ x e. y ) } = { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) |
9 |
8
|
imaeq2d |
|- ( x = A -> ( # " { y e. ~P ( 1 ... x ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ x e. y ) } ) = ( # " { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) ) |
10 |
9
|
supeq1d |
|- ( x = A -> sup ( ( # " { y e. ~P ( 1 ... x ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ x e. y ) } ) , RR , < ) = sup ( ( # " { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) , RR , < ) ) |
11 |
|
ltso |
|- < Or RR |
12 |
11
|
supex |
|- sup ( ( # " { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) , RR , < ) e. _V |
13 |
10 3 12
|
fvmpt |
|- ( A e. ( 1 ... N ) -> ( K ` A ) = sup ( ( # " { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) , RR , < ) ) |