Step |
Hyp |
Ref |
Expression |
1 |
|
erdsze.n |
|- ( ph -> N e. NN ) |
2 |
|
erdsze.f |
|- ( ph -> F : ( 1 ... N ) -1-1-> RR ) |
3 |
|
erdszelem.k |
|- K = ( x e. ( 1 ... N ) |-> sup ( ( # " { y e. ~P ( 1 ... x ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ x e. y ) } ) , RR , < ) ) |
4 |
|
erdszelem.o |
|- O Or RR |
5 |
|
erdszelem.a |
|- ( ph -> A e. ( 1 ... N ) ) |
6 |
|
erdszelem7.r |
|- ( ph -> R e. NN ) |
7 |
|
erdszelem7.m |
|- ( ph -> -. ( K ` A ) e. ( 1 ... ( R - 1 ) ) ) |
8 |
|
hashf |
|- # : _V --> ( NN0 u. { +oo } ) |
9 |
|
ffun |
|- ( # : _V --> ( NN0 u. { +oo } ) -> Fun # ) |
10 |
8 9
|
ax-mp |
|- Fun # |
11 |
1 2 3 4
|
erdszelem5 |
|- ( ( ph /\ A e. ( 1 ... N ) ) -> ( K ` A ) e. ( # " { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) ) |
12 |
5 11
|
mpdan |
|- ( ph -> ( K ` A ) e. ( # " { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) ) |
13 |
|
fvelima |
|- ( ( Fun # /\ ( K ` A ) e. ( # " { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) ) -> E. s e. { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ( # ` s ) = ( K ` A ) ) |
14 |
10 12 13
|
sylancr |
|- ( ph -> E. s e. { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ( # ` s ) = ( K ` A ) ) |
15 |
|
eqid |
|- { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } = { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } |
16 |
15
|
erdszelem1 |
|- ( s e. { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } <-> ( s C_ ( 1 ... A ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) /\ A e. s ) ) |
17 |
|
simprl1 |
|- ( ( ph /\ ( ( s C_ ( 1 ... A ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) /\ A e. s ) /\ ( # ` s ) = ( K ` A ) ) ) -> s C_ ( 1 ... A ) ) |
18 |
|
elfzuz3 |
|- ( A e. ( 1 ... N ) -> N e. ( ZZ>= ` A ) ) |
19 |
|
fzss2 |
|- ( N e. ( ZZ>= ` A ) -> ( 1 ... A ) C_ ( 1 ... N ) ) |
20 |
5 18 19
|
3syl |
|- ( ph -> ( 1 ... A ) C_ ( 1 ... N ) ) |
21 |
20
|
adantr |
|- ( ( ph /\ ( ( s C_ ( 1 ... A ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) /\ A e. s ) /\ ( # ` s ) = ( K ` A ) ) ) -> ( 1 ... A ) C_ ( 1 ... N ) ) |
22 |
17 21
|
sstrd |
|- ( ( ph /\ ( ( s C_ ( 1 ... A ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) /\ A e. s ) /\ ( # ` s ) = ( K ` A ) ) ) -> s C_ ( 1 ... N ) ) |
23 |
|
velpw |
|- ( s e. ~P ( 1 ... N ) <-> s C_ ( 1 ... N ) ) |
24 |
22 23
|
sylibr |
|- ( ( ph /\ ( ( s C_ ( 1 ... A ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) /\ A e. s ) /\ ( # ` s ) = ( K ` A ) ) ) -> s e. ~P ( 1 ... N ) ) |
25 |
1 2 3 4
|
erdszelem6 |
|- ( ph -> K : ( 1 ... N ) --> NN ) |
26 |
25 5
|
ffvelrnd |
|- ( ph -> ( K ` A ) e. NN ) |
27 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
28 |
26 27
|
eleqtrdi |
|- ( ph -> ( K ` A ) e. ( ZZ>= ` 1 ) ) |
29 |
|
nnz |
|- ( R e. NN -> R e. ZZ ) |
30 |
|
peano2zm |
|- ( R e. ZZ -> ( R - 1 ) e. ZZ ) |
31 |
6 29 30
|
3syl |
|- ( ph -> ( R - 1 ) e. ZZ ) |
32 |
|
elfz5 |
|- ( ( ( K ` A ) e. ( ZZ>= ` 1 ) /\ ( R - 1 ) e. ZZ ) -> ( ( K ` A ) e. ( 1 ... ( R - 1 ) ) <-> ( K ` A ) <_ ( R - 1 ) ) ) |
33 |
28 31 32
|
syl2anc |
|- ( ph -> ( ( K ` A ) e. ( 1 ... ( R - 1 ) ) <-> ( K ` A ) <_ ( R - 1 ) ) ) |
34 |
|
nnltlem1 |
|- ( ( ( K ` A ) e. NN /\ R e. NN ) -> ( ( K ` A ) < R <-> ( K ` A ) <_ ( R - 1 ) ) ) |
35 |
26 6 34
|
syl2anc |
|- ( ph -> ( ( K ` A ) < R <-> ( K ` A ) <_ ( R - 1 ) ) ) |
36 |
33 35
|
bitr4d |
|- ( ph -> ( ( K ` A ) e. ( 1 ... ( R - 1 ) ) <-> ( K ` A ) < R ) ) |
37 |
7 36
|
mtbid |
|- ( ph -> -. ( K ` A ) < R ) |
38 |
6
|
nnred |
|- ( ph -> R e. RR ) |
39 |
15
|
erdszelem2 |
|- ( ( # " { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) e. Fin /\ ( # " { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) C_ NN ) |
40 |
39
|
simpri |
|- ( # " { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) C_ NN |
41 |
|
nnssre |
|- NN C_ RR |
42 |
40 41
|
sstri |
|- ( # " { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) C_ RR |
43 |
42 12
|
sselid |
|- ( ph -> ( K ` A ) e. RR ) |
44 |
38 43
|
lenltd |
|- ( ph -> ( R <_ ( K ` A ) <-> -. ( K ` A ) < R ) ) |
45 |
37 44
|
mpbird |
|- ( ph -> R <_ ( K ` A ) ) |
46 |
45
|
adantr |
|- ( ( ph /\ ( ( s C_ ( 1 ... A ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) /\ A e. s ) /\ ( # ` s ) = ( K ` A ) ) ) -> R <_ ( K ` A ) ) |
47 |
|
simprr |
|- ( ( ph /\ ( ( s C_ ( 1 ... A ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) /\ A e. s ) /\ ( # ` s ) = ( K ` A ) ) ) -> ( # ` s ) = ( K ` A ) ) |
48 |
46 47
|
breqtrrd |
|- ( ( ph /\ ( ( s C_ ( 1 ... A ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) /\ A e. s ) /\ ( # ` s ) = ( K ` A ) ) ) -> R <_ ( # ` s ) ) |
49 |
|
simprl2 |
|- ( ( ph /\ ( ( s C_ ( 1 ... A ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) /\ A e. s ) /\ ( # ` s ) = ( K ` A ) ) ) -> ( F |` s ) Isom < , O ( s , ( F " s ) ) ) |
50 |
24 48 49
|
jca32 |
|- ( ( ph /\ ( ( s C_ ( 1 ... A ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) /\ A e. s ) /\ ( # ` s ) = ( K ` A ) ) ) -> ( s e. ~P ( 1 ... N ) /\ ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) ) ) ) |
51 |
50
|
expr |
|- ( ( ph /\ ( s C_ ( 1 ... A ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) /\ A e. s ) ) -> ( ( # ` s ) = ( K ` A ) -> ( s e. ~P ( 1 ... N ) /\ ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) ) ) ) ) |
52 |
16 51
|
sylan2b |
|- ( ( ph /\ s e. { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) -> ( ( # ` s ) = ( K ` A ) -> ( s e. ~P ( 1 ... N ) /\ ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) ) ) ) ) |
53 |
52
|
expimpd |
|- ( ph -> ( ( s e. { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } /\ ( # ` s ) = ( K ` A ) ) -> ( s e. ~P ( 1 ... N ) /\ ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) ) ) ) ) |
54 |
53
|
reximdv2 |
|- ( ph -> ( E. s e. { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ( # ` s ) = ( K ` A ) -> E. s e. ~P ( 1 ... N ) ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) ) ) ) |
55 |
14 54
|
mpd |
|- ( ph -> E. s e. ~P ( 1 ... N ) ( R <_ ( # ` s ) /\ ( F |` s ) Isom < , O ( s , ( F " s ) ) ) ) |