Step |
Hyp |
Ref |
Expression |
1 |
|
erdsze.n |
|- ( ph -> N e. NN ) |
2 |
|
erdsze.f |
|- ( ph -> F : ( 1 ... N ) -1-1-> RR ) |
3 |
|
erdszelem.k |
|- K = ( x e. ( 1 ... N ) |-> sup ( ( # " { y e. ~P ( 1 ... x ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ x e. y ) } ) , RR , < ) ) |
4 |
|
erdszelem.o |
|- O Or RR |
5 |
|
erdszelem.a |
|- ( ph -> A e. ( 1 ... N ) ) |
6 |
|
erdszelem.b |
|- ( ph -> B e. ( 1 ... N ) ) |
7 |
|
erdszelem.l |
|- ( ph -> A < B ) |
8 |
|
hashf |
|- # : _V --> ( NN0 u. { +oo } ) |
9 |
|
ffun |
|- ( # : _V --> ( NN0 u. { +oo } ) -> Fun # ) |
10 |
8 9
|
ax-mp |
|- Fun # |
11 |
1 2 3 4
|
erdszelem5 |
|- ( ( ph /\ A e. ( 1 ... N ) ) -> ( K ` A ) e. ( # " { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) ) |
12 |
5 11
|
mpdan |
|- ( ph -> ( K ` A ) e. ( # " { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) ) |
13 |
|
fvelima |
|- ( ( Fun # /\ ( K ` A ) e. ( # " { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) ) -> E. f e. { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ( # ` f ) = ( K ` A ) ) |
14 |
10 12 13
|
sylancr |
|- ( ph -> E. f e. { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ( # ` f ) = ( K ` A ) ) |
15 |
|
eqid |
|- { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } = { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } |
16 |
15
|
erdszelem1 |
|- ( f e. { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } <-> ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) |
17 |
|
fzfid |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( 1 ... A ) e. Fin ) |
18 |
|
simplr1 |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> f C_ ( 1 ... A ) ) |
19 |
|
ssfi |
|- ( ( ( 1 ... A ) e. Fin /\ f C_ ( 1 ... A ) ) -> f e. Fin ) |
20 |
17 18 19
|
syl2anc |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> f e. Fin ) |
21 |
|
hashcl |
|- ( f e. Fin -> ( # ` f ) e. NN0 ) |
22 |
20 21
|
syl |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( # ` f ) e. NN0 ) |
23 |
22
|
nn0red |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( # ` f ) e. RR ) |
24 |
|
eqid |
|- { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } = { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } |
25 |
24
|
erdszelem2 |
|- ( ( # " { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } ) e. Fin /\ ( # " { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } ) C_ NN ) |
26 |
25
|
simpri |
|- ( # " { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } ) C_ NN |
27 |
|
nnssre |
|- NN C_ RR |
28 |
26 27
|
sstri |
|- ( # " { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } ) C_ RR |
29 |
28
|
a1i |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( # " { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } ) C_ RR ) |
30 |
5
|
elfzelzd |
|- ( ph -> A e. ZZ ) |
31 |
6
|
elfzelzd |
|- ( ph -> B e. ZZ ) |
32 |
|
elfznn |
|- ( A e. ( 1 ... N ) -> A e. NN ) |
33 |
5 32
|
syl |
|- ( ph -> A e. NN ) |
34 |
33
|
nnred |
|- ( ph -> A e. RR ) |
35 |
|
elfznn |
|- ( B e. ( 1 ... N ) -> B e. NN ) |
36 |
6 35
|
syl |
|- ( ph -> B e. NN ) |
37 |
36
|
nnred |
|- ( ph -> B e. RR ) |
38 |
34 37 7
|
ltled |
|- ( ph -> A <_ B ) |
39 |
|
eluz2 |
|- ( B e. ( ZZ>= ` A ) <-> ( A e. ZZ /\ B e. ZZ /\ A <_ B ) ) |
40 |
30 31 38 39
|
syl3anbrc |
|- ( ph -> B e. ( ZZ>= ` A ) ) |
41 |
|
fzss2 |
|- ( B e. ( ZZ>= ` A ) -> ( 1 ... A ) C_ ( 1 ... B ) ) |
42 |
40 41
|
syl |
|- ( ph -> ( 1 ... A ) C_ ( 1 ... B ) ) |
43 |
42
|
ad2antrr |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( 1 ... A ) C_ ( 1 ... B ) ) |
44 |
18 43
|
sstrd |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> f C_ ( 1 ... B ) ) |
45 |
|
elfz1end |
|- ( B e. NN <-> B e. ( 1 ... B ) ) |
46 |
36 45
|
sylib |
|- ( ph -> B e. ( 1 ... B ) ) |
47 |
46
|
ad2antrr |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> B e. ( 1 ... B ) ) |
48 |
47
|
snssd |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> { B } C_ ( 1 ... B ) ) |
49 |
44 48
|
unssd |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( f u. { B } ) C_ ( 1 ... B ) ) |
50 |
|
simplr2 |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( F |` f ) Isom < , O ( f , ( F " f ) ) ) |
51 |
|
f1f |
|- ( F : ( 1 ... N ) -1-1-> RR -> F : ( 1 ... N ) --> RR ) |
52 |
2 51
|
syl |
|- ( ph -> F : ( 1 ... N ) --> RR ) |
53 |
52
|
ad2antrr |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> F : ( 1 ... N ) --> RR ) |
54 |
|
elfzuz3 |
|- ( A e. ( 1 ... N ) -> N e. ( ZZ>= ` A ) ) |
55 |
|
fzss2 |
|- ( N e. ( ZZ>= ` A ) -> ( 1 ... A ) C_ ( 1 ... N ) ) |
56 |
5 54 55
|
3syl |
|- ( ph -> ( 1 ... A ) C_ ( 1 ... N ) ) |
57 |
56
|
ad2antrr |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( 1 ... A ) C_ ( 1 ... N ) ) |
58 |
18 57
|
sstrd |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> f C_ ( 1 ... N ) ) |
59 |
|
fzssuz |
|- ( 1 ... N ) C_ ( ZZ>= ` 1 ) |
60 |
|
uzssz |
|- ( ZZ>= ` 1 ) C_ ZZ |
61 |
|
zssre |
|- ZZ C_ RR |
62 |
60 61
|
sstri |
|- ( ZZ>= ` 1 ) C_ RR |
63 |
59 62
|
sstri |
|- ( 1 ... N ) C_ RR |
64 |
|
ltso |
|- < Or RR |
65 |
|
soss |
|- ( ( 1 ... N ) C_ RR -> ( < Or RR -> < Or ( 1 ... N ) ) ) |
66 |
63 64 65
|
mp2 |
|- < Or ( 1 ... N ) |
67 |
|
soisores |
|- ( ( ( < Or ( 1 ... N ) /\ O Or RR ) /\ ( F : ( 1 ... N ) --> RR /\ f C_ ( 1 ... N ) ) ) -> ( ( F |` f ) Isom < , O ( f , ( F " f ) ) <-> A. z e. f A. w e. f ( z < w -> ( F ` z ) O ( F ` w ) ) ) ) |
68 |
66 4 67
|
mpanl12 |
|- ( ( F : ( 1 ... N ) --> RR /\ f C_ ( 1 ... N ) ) -> ( ( F |` f ) Isom < , O ( f , ( F " f ) ) <-> A. z e. f A. w e. f ( z < w -> ( F ` z ) O ( F ` w ) ) ) ) |
69 |
53 58 68
|
syl2anc |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( ( F |` f ) Isom < , O ( f , ( F " f ) ) <-> A. z e. f A. w e. f ( z < w -> ( F ` z ) O ( F ` w ) ) ) ) |
70 |
50 69
|
mpbid |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> A. z e. f A. w e. f ( z < w -> ( F ` z ) O ( F ` w ) ) ) |
71 |
70
|
r19.21bi |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> A. w e. f ( z < w -> ( F ` z ) O ( F ` w ) ) ) |
72 |
18
|
sselda |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> z e. ( 1 ... A ) ) |
73 |
|
elfzle2 |
|- ( z e. ( 1 ... A ) -> z <_ A ) |
74 |
72 73
|
syl |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> z <_ A ) |
75 |
58
|
sselda |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> z e. ( 1 ... N ) ) |
76 |
63 75
|
sselid |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> z e. RR ) |
77 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> A e. ( 1 ... N ) ) |
78 |
77 32
|
syl |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> A e. NN ) |
79 |
78
|
nnred |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> A e. RR ) |
80 |
76 79
|
lenltd |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> ( z <_ A <-> -. A < z ) ) |
81 |
74 80
|
mpbid |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> -. A < z ) |
82 |
50
|
adantr |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> ( F |` f ) Isom < , O ( f , ( F " f ) ) ) |
83 |
|
simplr3 |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> A e. f ) |
84 |
83
|
adantr |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> A e. f ) |
85 |
|
simpr |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> z e. f ) |
86 |
|
isorel |
|- ( ( ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ ( A e. f /\ z e. f ) ) -> ( A < z <-> ( ( F |` f ) ` A ) O ( ( F |` f ) ` z ) ) ) |
87 |
|
fvres |
|- ( A e. f -> ( ( F |` f ) ` A ) = ( F ` A ) ) |
88 |
|
fvres |
|- ( z e. f -> ( ( F |` f ) ` z ) = ( F ` z ) ) |
89 |
87 88
|
breqan12d |
|- ( ( A e. f /\ z e. f ) -> ( ( ( F |` f ) ` A ) O ( ( F |` f ) ` z ) <-> ( F ` A ) O ( F ` z ) ) ) |
90 |
89
|
adantl |
|- ( ( ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ ( A e. f /\ z e. f ) ) -> ( ( ( F |` f ) ` A ) O ( ( F |` f ) ` z ) <-> ( F ` A ) O ( F ` z ) ) ) |
91 |
86 90
|
bitrd |
|- ( ( ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ ( A e. f /\ z e. f ) ) -> ( A < z <-> ( F ` A ) O ( F ` z ) ) ) |
92 |
82 84 85 91
|
syl12anc |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> ( A < z <-> ( F ` A ) O ( F ` z ) ) ) |
93 |
81 92
|
mtbid |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> -. ( F ` A ) O ( F ` z ) ) |
94 |
|
simplr |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> ( F ` A ) O ( F ` B ) ) |
95 |
53
|
adantr |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> F : ( 1 ... N ) --> RR ) |
96 |
95 75
|
ffvelrnd |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> ( F ` z ) e. RR ) |
97 |
95 77
|
ffvelrnd |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> ( F ` A ) e. RR ) |
98 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> B e. ( 1 ... N ) ) |
99 |
98
|
adantr |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> B e. ( 1 ... N ) ) |
100 |
95 99
|
ffvelrnd |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> ( F ` B ) e. RR ) |
101 |
|
sotr2 |
|- ( ( O Or RR /\ ( ( F ` z ) e. RR /\ ( F ` A ) e. RR /\ ( F ` B ) e. RR ) ) -> ( ( -. ( F ` A ) O ( F ` z ) /\ ( F ` A ) O ( F ` B ) ) -> ( F ` z ) O ( F ` B ) ) ) |
102 |
4 101
|
mpan |
|- ( ( ( F ` z ) e. RR /\ ( F ` A ) e. RR /\ ( F ` B ) e. RR ) -> ( ( -. ( F ` A ) O ( F ` z ) /\ ( F ` A ) O ( F ` B ) ) -> ( F ` z ) O ( F ` B ) ) ) |
103 |
96 97 100 102
|
syl3anc |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> ( ( -. ( F ` A ) O ( F ` z ) /\ ( F ` A ) O ( F ` B ) ) -> ( F ` z ) O ( F ` B ) ) ) |
104 |
93 94 103
|
mp2and |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> ( F ` z ) O ( F ` B ) ) |
105 |
104
|
a1d |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> ( z < w -> ( F ` z ) O ( F ` B ) ) ) |
106 |
|
elsni |
|- ( w e. { B } -> w = B ) |
107 |
106
|
fveq2d |
|- ( w e. { B } -> ( F ` w ) = ( F ` B ) ) |
108 |
107
|
breq2d |
|- ( w e. { B } -> ( ( F ` z ) O ( F ` w ) <-> ( F ` z ) O ( F ` B ) ) ) |
109 |
108
|
imbi2d |
|- ( w e. { B } -> ( ( z < w -> ( F ` z ) O ( F ` w ) ) <-> ( z < w -> ( F ` z ) O ( F ` B ) ) ) ) |
110 |
105 109
|
syl5ibrcom |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> ( w e. { B } -> ( z < w -> ( F ` z ) O ( F ` w ) ) ) ) |
111 |
110
|
ralrimiv |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> A. w e. { B } ( z < w -> ( F ` z ) O ( F ` w ) ) ) |
112 |
|
ralunb |
|- ( A. w e. ( f u. { B } ) ( z < w -> ( F ` z ) O ( F ` w ) ) <-> ( A. w e. f ( z < w -> ( F ` z ) O ( F ` w ) ) /\ A. w e. { B } ( z < w -> ( F ` z ) O ( F ` w ) ) ) ) |
113 |
71 111 112
|
sylanbrc |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ z e. f ) -> A. w e. ( f u. { B } ) ( z < w -> ( F ` z ) O ( F ` w ) ) ) |
114 |
113
|
ralrimiva |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> A. z e. f A. w e. ( f u. { B } ) ( z < w -> ( F ` z ) O ( F ` w ) ) ) |
115 |
49
|
sselda |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ w e. ( f u. { B } ) ) -> w e. ( 1 ... B ) ) |
116 |
|
elfzle2 |
|- ( w e. ( 1 ... B ) -> w <_ B ) |
117 |
116
|
adantl |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ w e. ( 1 ... B ) ) -> w <_ B ) |
118 |
|
elfzelz |
|- ( w e. ( 1 ... B ) -> w e. ZZ ) |
119 |
118
|
zred |
|- ( w e. ( 1 ... B ) -> w e. RR ) |
120 |
119
|
adantl |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ w e. ( 1 ... B ) ) -> w e. RR ) |
121 |
37
|
ad3antrrr |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ w e. ( 1 ... B ) ) -> B e. RR ) |
122 |
120 121
|
lenltd |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ w e. ( 1 ... B ) ) -> ( w <_ B <-> -. B < w ) ) |
123 |
117 122
|
mpbid |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ w e. ( 1 ... B ) ) -> -. B < w ) |
124 |
115 123
|
syldan |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ w e. ( f u. { B } ) ) -> -. B < w ) |
125 |
124
|
pm2.21d |
|- ( ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) /\ w e. ( f u. { B } ) ) -> ( B < w -> ( F ` z ) O ( F ` w ) ) ) |
126 |
125
|
ralrimiva |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> A. w e. ( f u. { B } ) ( B < w -> ( F ` z ) O ( F ` w ) ) ) |
127 |
|
elsni |
|- ( z e. { B } -> z = B ) |
128 |
127
|
breq1d |
|- ( z e. { B } -> ( z < w <-> B < w ) ) |
129 |
128
|
imbi1d |
|- ( z e. { B } -> ( ( z < w -> ( F ` z ) O ( F ` w ) ) <-> ( B < w -> ( F ` z ) O ( F ` w ) ) ) ) |
130 |
129
|
ralbidv |
|- ( z e. { B } -> ( A. w e. ( f u. { B } ) ( z < w -> ( F ` z ) O ( F ` w ) ) <-> A. w e. ( f u. { B } ) ( B < w -> ( F ` z ) O ( F ` w ) ) ) ) |
131 |
126 130
|
syl5ibrcom |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( z e. { B } -> A. w e. ( f u. { B } ) ( z < w -> ( F ` z ) O ( F ` w ) ) ) ) |
132 |
131
|
ralrimiv |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> A. z e. { B } A. w e. ( f u. { B } ) ( z < w -> ( F ` z ) O ( F ` w ) ) ) |
133 |
|
ralunb |
|- ( A. z e. ( f u. { B } ) A. w e. ( f u. { B } ) ( z < w -> ( F ` z ) O ( F ` w ) ) <-> ( A. z e. f A. w e. ( f u. { B } ) ( z < w -> ( F ` z ) O ( F ` w ) ) /\ A. z e. { B } A. w e. ( f u. { B } ) ( z < w -> ( F ` z ) O ( F ` w ) ) ) ) |
134 |
114 132 133
|
sylanbrc |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> A. z e. ( f u. { B } ) A. w e. ( f u. { B } ) ( z < w -> ( F ` z ) O ( F ` w ) ) ) |
135 |
98
|
snssd |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> { B } C_ ( 1 ... N ) ) |
136 |
58 135
|
unssd |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( f u. { B } ) C_ ( 1 ... N ) ) |
137 |
|
soisores |
|- ( ( ( < Or ( 1 ... N ) /\ O Or RR ) /\ ( F : ( 1 ... N ) --> RR /\ ( f u. { B } ) C_ ( 1 ... N ) ) ) -> ( ( F |` ( f u. { B } ) ) Isom < , O ( ( f u. { B } ) , ( F " ( f u. { B } ) ) ) <-> A. z e. ( f u. { B } ) A. w e. ( f u. { B } ) ( z < w -> ( F ` z ) O ( F ` w ) ) ) ) |
138 |
66 4 137
|
mpanl12 |
|- ( ( F : ( 1 ... N ) --> RR /\ ( f u. { B } ) C_ ( 1 ... N ) ) -> ( ( F |` ( f u. { B } ) ) Isom < , O ( ( f u. { B } ) , ( F " ( f u. { B } ) ) ) <-> A. z e. ( f u. { B } ) A. w e. ( f u. { B } ) ( z < w -> ( F ` z ) O ( F ` w ) ) ) ) |
139 |
53 136 138
|
syl2anc |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( ( F |` ( f u. { B } ) ) Isom < , O ( ( f u. { B } ) , ( F " ( f u. { B } ) ) ) <-> A. z e. ( f u. { B } ) A. w e. ( f u. { B } ) ( z < w -> ( F ` z ) O ( F ` w ) ) ) ) |
140 |
134 139
|
mpbird |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( F |` ( f u. { B } ) ) Isom < , O ( ( f u. { B } ) , ( F " ( f u. { B } ) ) ) ) |
141 |
|
ssun2 |
|- { B } C_ ( f u. { B } ) |
142 |
|
snssg |
|- ( B e. ( 1 ... B ) -> ( B e. ( f u. { B } ) <-> { B } C_ ( f u. { B } ) ) ) |
143 |
47 142
|
syl |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( B e. ( f u. { B } ) <-> { B } C_ ( f u. { B } ) ) ) |
144 |
141 143
|
mpbiri |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> B e. ( f u. { B } ) ) |
145 |
24
|
erdszelem1 |
|- ( ( f u. { B } ) e. { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } <-> ( ( f u. { B } ) C_ ( 1 ... B ) /\ ( F |` ( f u. { B } ) ) Isom < , O ( ( f u. { B } ) , ( F " ( f u. { B } ) ) ) /\ B e. ( f u. { B } ) ) ) |
146 |
49 140 144 145
|
syl3anbrc |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( f u. { B } ) e. { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } ) |
147 |
|
vex |
|- f e. _V |
148 |
|
snex |
|- { B } e. _V |
149 |
147 148
|
unex |
|- ( f u. { B } ) e. _V |
150 |
8
|
fdmi |
|- dom # = _V |
151 |
149 150
|
eleqtrri |
|- ( f u. { B } ) e. dom # |
152 |
|
funfvima |
|- ( ( Fun # /\ ( f u. { B } ) e. dom # ) -> ( ( f u. { B } ) e. { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } -> ( # ` ( f u. { B } ) ) e. ( # " { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } ) ) ) |
153 |
10 151 152
|
mp2an |
|- ( ( f u. { B } ) e. { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } -> ( # ` ( f u. { B } ) ) e. ( # " { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } ) ) |
154 |
146 153
|
syl |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( # ` ( f u. { B } ) ) e. ( # " { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } ) ) |
155 |
154
|
ne0d |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( # " { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } ) =/= (/) ) |
156 |
25
|
simpli |
|- ( # " { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } ) e. Fin |
157 |
|
fimaxre2 |
|- ( ( ( # " { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } ) C_ RR /\ ( # " { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } ) e. Fin ) -> E. z e. RR A. w e. ( # " { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } ) w <_ z ) |
158 |
29 156 157
|
sylancl |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> E. z e. RR A. w e. ( # " { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } ) w <_ z ) |
159 |
34 37
|
ltnled |
|- ( ph -> ( A < B <-> -. B <_ A ) ) |
160 |
7 159
|
mpbid |
|- ( ph -> -. B <_ A ) |
161 |
|
elfzle2 |
|- ( B e. ( 1 ... A ) -> B <_ A ) |
162 |
160 161
|
nsyl |
|- ( ph -> -. B e. ( 1 ... A ) ) |
163 |
162
|
ad2antrr |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> -. B e. ( 1 ... A ) ) |
164 |
18 163
|
ssneldd |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> -. B e. f ) |
165 |
|
hashunsng |
|- ( B e. ( 1 ... N ) -> ( ( f e. Fin /\ -. B e. f ) -> ( # ` ( f u. { B } ) ) = ( ( # ` f ) + 1 ) ) ) |
166 |
98 165
|
syl |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( ( f e. Fin /\ -. B e. f ) -> ( # ` ( f u. { B } ) ) = ( ( # ` f ) + 1 ) ) ) |
167 |
20 164 166
|
mp2and |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( # ` ( f u. { B } ) ) = ( ( # ` f ) + 1 ) ) |
168 |
167 154
|
eqeltrrd |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( ( # ` f ) + 1 ) e. ( # " { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } ) ) |
169 |
|
suprub |
|- ( ( ( ( # " { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } ) C_ RR /\ ( # " { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } ) =/= (/) /\ E. z e. RR A. w e. ( # " { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } ) w <_ z ) /\ ( ( # ` f ) + 1 ) e. ( # " { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } ) ) -> ( ( # ` f ) + 1 ) <_ sup ( ( # " { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } ) , RR , < ) ) |
170 |
29 155 158 168 169
|
syl31anc |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( ( # ` f ) + 1 ) <_ sup ( ( # " { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } ) , RR , < ) ) |
171 |
1 2 3
|
erdszelem3 |
|- ( B e. ( 1 ... N ) -> ( K ` B ) = sup ( ( # " { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } ) , RR , < ) ) |
172 |
6 171
|
syl |
|- ( ph -> ( K ` B ) = sup ( ( # " { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } ) , RR , < ) ) |
173 |
172
|
ad2antrr |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( K ` B ) = sup ( ( # " { y e. ~P ( 1 ... B ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ B e. y ) } ) , RR , < ) ) |
174 |
170 173
|
breqtrrd |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( ( # ` f ) + 1 ) <_ ( K ` B ) ) |
175 |
1 2 3 4
|
erdszelem6 |
|- ( ph -> K : ( 1 ... N ) --> NN ) |
176 |
175 6
|
ffvelrnd |
|- ( ph -> ( K ` B ) e. NN ) |
177 |
176
|
ad2antrr |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( K ` B ) e. NN ) |
178 |
177
|
nnnn0d |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( K ` B ) e. NN0 ) |
179 |
|
nn0ltp1le |
|- ( ( ( # ` f ) e. NN0 /\ ( K ` B ) e. NN0 ) -> ( ( # ` f ) < ( K ` B ) <-> ( ( # ` f ) + 1 ) <_ ( K ` B ) ) ) |
180 |
22 178 179
|
syl2anc |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( ( # ` f ) < ( K ` B ) <-> ( ( # ` f ) + 1 ) <_ ( K ` B ) ) ) |
181 |
174 180
|
mpbird |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( # ` f ) < ( K ` B ) ) |
182 |
23 181
|
ltned |
|- ( ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) /\ ( F ` A ) O ( F ` B ) ) -> ( # ` f ) =/= ( K ` B ) ) |
183 |
182
|
ex |
|- ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) -> ( ( F ` A ) O ( F ` B ) -> ( # ` f ) =/= ( K ` B ) ) ) |
184 |
|
neeq1 |
|- ( ( # ` f ) = ( K ` A ) -> ( ( # ` f ) =/= ( K ` B ) <-> ( K ` A ) =/= ( K ` B ) ) ) |
185 |
184
|
imbi2d |
|- ( ( # ` f ) = ( K ` A ) -> ( ( ( F ` A ) O ( F ` B ) -> ( # ` f ) =/= ( K ` B ) ) <-> ( ( F ` A ) O ( F ` B ) -> ( K ` A ) =/= ( K ` B ) ) ) ) |
186 |
183 185
|
syl5ibcom |
|- ( ( ph /\ ( f C_ ( 1 ... A ) /\ ( F |` f ) Isom < , O ( f , ( F " f ) ) /\ A e. f ) ) -> ( ( # ` f ) = ( K ` A ) -> ( ( F ` A ) O ( F ` B ) -> ( K ` A ) =/= ( K ` B ) ) ) ) |
187 |
16 186
|
sylan2b |
|- ( ( ph /\ f e. { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ) -> ( ( # ` f ) = ( K ` A ) -> ( ( F ` A ) O ( F ` B ) -> ( K ` A ) =/= ( K ` B ) ) ) ) |
188 |
187
|
rexlimdva |
|- ( ph -> ( E. f e. { y e. ~P ( 1 ... A ) | ( ( F |` y ) Isom < , O ( y , ( F " y ) ) /\ A e. y ) } ( # ` f ) = ( K ` A ) -> ( ( F ` A ) O ( F ` B ) -> ( K ` A ) =/= ( K ` B ) ) ) ) |
189 |
14 188
|
mpd |
|- ( ph -> ( ( F ` A ) O ( F ` B ) -> ( K ` A ) =/= ( K ` B ) ) ) |
190 |
189
|
necon2bd |
|- ( ph -> ( ( K ` A ) = ( K ` B ) -> -. ( F ` A ) O ( F ` B ) ) ) |