Step |
Hyp |
Ref |
Expression |
1 |
|
ereldm.1 |
|- ( ph -> R Er X ) |
2 |
|
ereldm.2 |
|- ( ph -> [ A ] R = [ B ] R ) |
3 |
2
|
neeq1d |
|- ( ph -> ( [ A ] R =/= (/) <-> [ B ] R =/= (/) ) ) |
4 |
|
ecdmn0 |
|- ( A e. dom R <-> [ A ] R =/= (/) ) |
5 |
|
ecdmn0 |
|- ( B e. dom R <-> [ B ] R =/= (/) ) |
6 |
3 4 5
|
3bitr4g |
|- ( ph -> ( A e. dom R <-> B e. dom R ) ) |
7 |
|
erdm |
|- ( R Er X -> dom R = X ) |
8 |
1 7
|
syl |
|- ( ph -> dom R = X ) |
9 |
8
|
eleq2d |
|- ( ph -> ( A e. dom R <-> A e. X ) ) |
10 |
8
|
eleq2d |
|- ( ph -> ( B e. dom R <-> B e. X ) ) |
11 |
6 9 10
|
3bitr3d |
|- ( ph -> ( A e. X <-> B e. X ) ) |